

 Navigation

 	
 index

 	
 next |

 	2014 Argonne Soils Workshop automation workshop

Table of Contents

	Automation Workshop Welcome
	Schedule

	Additional Resources

	Introducing the Shell
	Objectives

	A Parable
	What and Why

	Key Points

	Files and Directories
	Objectives

	Cheat Sheet

	Navigating the filesystem

	Before you begin
	Windows

	Mac OS

	Nelle’s files
	What’s In A Name?

	Orthogonality
	Nelle’s Pipeline: Organizing Files

	Key Points

	Exercises

	Creating Things
	Objectives

	Making Directories

	Let’s make a file

	Which Editor?

	Deleting Is Forever

	With Great Power Comes Great Responsibility

	More Practice

	Another Useful Abbreviation

	Key Points

	Exercises

	Pipes and Filters
	Objectives

	Multi-step operations with bash

	Wildcards

	Downlading data with redirection
	Nelle’s Pipeline: Checking Files

	Key Points

	Exercises

	Loops
	Objectives

	Measure Twice, Run Once
	Nelle’s Pipeline: Processing Files

	Key Points

	Exercises

	Shell Scripts
	Objectives

	Now we’re cooking

	Text vs. Whatever

	Why Isn’t It Doing Anything?
	Nelle’s Pipeline: Creating a Script

	Key Points

	Exercises

	Getting started with Amazon EC2
	Logging into your new instance “in the cloud”
	Declare victory

	Amazon Web Services reference material

	Amazon Web Services reference material

	Basic EC2, command line, and BLAST
	Install BLAST and some other software
	Reciprocal BLAST calculation

	A few post-tutorial links

	Mapping with bwa
	Getting the Dependencies

	Getting the Data

	Mapping the Reads

	Visualizing your Data with Tablet

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Table of Contents
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Automation Workshop Welcome

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Automation Workshop Welcome

Welcome to the automation workshop at the
6th Argonne Soils Meeting [http://press3.mcs.anl.gov/asmw14/].

Schedule

	Day
	Schedule

	Friday 10/03
	
	1:30pm-5:00pm: Automating things with the shell (Will Trimble)
	Introducing the Shell (What is going on?)

	Files and Directories (cd,ls)

	Creating Things (mv,rm,cp)

	Pipes and Filters

	Loops (for)

	Shell Scripts (Doing Stuff)

	Finding Things (find,grep)

	Saturday 10/04
	
	9:00 Introduction (Adina Howe)

	9:30 MEGAN (Daniel Huson)

	11:30 MG-RAST website(Folker Meyer)

	12:00 MG-RAST API(Daniel Braithwaite)
	install-matR.txt

	12:30-1:30 Lunch

	1:30 KBase – metabolic models for metagenomes (Chris Henry)

	2:30-5:00pm Cloud computing to do more (Will Trimble)
	Notes on cloud computing

	Getting started with EC2: Logging into your new instance “in the cloud”

	Lecture notes on BLAST

	Similarity search: Basic EC2, command line, and BLAST

	(Lengthy lecture notes on short read mapping)

	Short read mapping: Mapping with bwa

Additional Resources

These bash lessons were adapted from Software Carpentry’s bash for beginners lessons.
Software Carpentry is a nonprofit that maintains computational training materials
for scientists [http://software-carpentry.org/lessons.html].

The cloud computing lessons were adapted from
GED’s ANGUS course [http://ged.msu.edu/angus/] which is run at MSU every summer and teaches workshops
like this. Specifically, this is a one-afternoon abbreviation of the
2013 CEMI workshop at Caltech [http://2013-caltech-workshop.readthedocs.org/en/latest/], which
was a four-day course.

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Automation Workshop Welcome
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Introducing the Shell

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Introducing the Shell

Objectives

	Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

	Explain when and why command-line interfaces should be used instead
of graphical interfaces.

A Parable

Nelle Nemo, a marine biologist, has just returned from a six-month
survey of the North Pacific
Gyre [http://en.wikipedia.org/wiki/North_Pacific_Gyre], where she has
been sampling gelatinous marine life in the Great Pacific Garbage
Patch [http://en.wikipedia.org/wiki/Great_Pacific_Garbage_Patch]. She
has 300 samples in all, and now needs to:

	Run each sample through an assay machine that will measure the
relative abundance of 300 different proteins. The machine’s output
for a single sample is a file with one line for each protein.

	Calculate statistics for each of the proteins separately using a
program her supervisor wrote called goostat.

	Compare the statistics for each protein with corresponding statistics
for each other protein using a program one of the other graduate
students wrote called goodiff.

	Write up. Her supervisor would really like her to do this by the end
of the month so that her paper can appear in an upcoming special
issue of Aquatic Goo Letters.

It takes about half an hour for the assay machine to process each
sample. The good news is, it only takes two minutes to set each one up.
Since her lab has eight assay machines that she can use in parallel,
this step will “only” take about two weeks.

The bad news is that if she has to run goostat and goodiff by
hand, she’ll have to enter filenames and click “OK” 45,150 times (300
runs of goostat, plus 300×299/2 runs of goodiff). At 30 seconds
each, that will take more than two weeks. Not only would she miss her
paper deadline, the chances of her typing all of those commands right
are practically zero.

The next few lessons will explore what she should do instead. More
specifically, they explain how she can use a command shell to automate
the repetitive steps in her processing pipeline so that her computer can
work 24 hours a day while she writes her paper. As a bonus, once she has
put a processing pipeline together, she will be able to use it again
whenever she collects more data.

What and Why

At a high level, computers do four things:

	run programs;

	store data;

	communicate with each other; and

	interact with us.

They can do the last of these in many different ways;
most of us use windows, icons, mice, and pointers. These
technologies didn’t become widespread until the 1980s, and,
critically, it is exceptionally difficult to automate mouseclicks.

There exists an automatable, text-only, interactive interface
under the surface of our computers and phones. Called a command-line
interface, or CLI, to
distinguish it from the graphical user
interface, or GUI, that
most people now use. The heart of a CLI is a read-evaluate-print
loop, or REPL: when the user
types a command and then presses the enter (or return) key, the computer
reads it, executes it, and prints its output. The user then types
another command, and so on until the user logs off.

This description makes it sound as though the user sends commands
directly to the computer, and the computer sends output directly to the
user. In fact, there is usually a program in between called a command
shell. What the user types goes into the
shell; it figures out what commands to run and orders the computer to
execute them.

A shell is a program like any other. What’s special about it is that its
job is to run other programs rather than to do calculations itself. The
most popular Unix shell is bash.
Bash is the default shell on most
modern implementations of Unix, and in most packages that provide
Unix-like tools for Windows.

Using Bash or any other shell sometimes feels more like programming than
like using a mouse. Commands are terse (often only a couple of
characters long), their names are frequently cryptic, and their output
is lines of text rather than something visual like a graph. On the other
hand, the shell allows us to combine existing tools in powerful ways
with only a few keystrokes and to set up pipelines to handle large
volumes of data automatically. In addition, the command line is often
the easiest way to interact with remote machines. As clusters and cloud
computing become more popular for scientific data crunching, being able
to drive them is becoming a necessary skill.

This no-frills text-only dialog with the computer can be your data file
handling robot, downloading hundreds or thousands of data files and
executing thousands or hundreds of thousands of programs on your behalf.

You just need some magic words.

Key Points

	A shell is a program whose primary purpose is to read commands and
run other programs.

	The shell’s main advantages are its high action-to-keystroke ratio,
its support for automating repetitive tasks, and that it can be used
to access networked machines.

	The shell’s main disadvantages are its primarily textual nature and
how cryptic its commands and operation can be.

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Introducing the Shell
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Files and Directories

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Files and Directories

Objectives

	Explain the similarities and differences between a file and a
directory.

	Translate an absolute path into a relative path and vice versa.

	Construct absolute and relative paths that identify specific files
and directories.

	Explain the steps in the shell’s read-run-print cycle.

	Identify the actual command, flags, and filenames in a command-line
call.

	Demonstrate the use of tab completion, and explain its advantages.

Cheat Sheet

Quick guide to shell [http://wltrimbl.github.io/2013-11-14-woodshole/lessons/ref/shell.html].

Navigating the filesystem

The part of the operating system responsible for managing files and
directories is called the file system.
It organizes our data into files, which hold information, and
directories (also called “folders”), which hold files or other
directories.

Several commands are frequently used to create, inspect, rename, and
delete files and directories. To start exploring them, let’s open a
shell window:

$

The dollar sign is a prompt, which shows
us that the shell is waiting for input; your shell may show something
more elaborate.

Before you begin

Windows

You need to install git bash [http://msysgit.github.io/].

After installing git bash, run the
Software Carpentry installer [http://files.software-carpentry.org/SWCarpentryInstaller.exe],
which installs tools inside of gitbash that make it more usable.

Mac OS

You can probably get away without installing anything for the class;
the unix-like tools you need are built in.

Just in case something important does not work, you may need the (free) apple Xcode Developer
bundle. This should be available for free from the apple store or from
Apple’s developer site [https://developer.apple.com].

Nelle’s files

In these lessons, we’re going to explore Nelle’s files. You can download
the example files and directories which Nelle is using, so that you can
explore the same files as described in the lesson. To do this, download
the zipped filesystem:

Download filesystem.zip [https://github.com/wltrimbl/2014-argonne-soils-automation/raw/master/novice-shell/filesystem.zip].

Unpack the zipped files - on Windows or a Mac, you can probably just
double-click or click the downloaded file to unpack it.

Open a terminal window. This will be “Terminal” on OSX and “Git Bash” on Windows.
You should see a black (or white) text window with a dollar sign in it.

Try typing

$ cd Downloads
$ unzip filesystem.zip

Once you have Nelle’s files and directories, change to Nelle’s home
directory to begin, by typing in the cd command:

$ cd ~/Downloads/filesystem/users/nelle

Don’t worry if you don’t know what this command means yet! We will cover
it soon.

Type the command whoami, then press the Enter key (sometimes marked
Return) to send the command to the shell. The command’s output is the ID
of the current user, i.e., it shows us who the shell thinks we are:

$ whoami
nelle
$

More specifically, when we type whoami the shell:

	finds a program called whoami,

	runs that program,

	displays that program’s output, then

	displays a new prompt to tell us that it’s ready for more commands.

Next, let’s find out where we are by running a command called pwd
(which stands for “print working directory”). At any moment, our
current working
directory is our current
default directory, i.e., the directory that the computer assumes we want
to run commands in unless we explicitly specify something else. Here,
the computer’s response is /users/nelle, which is Nelle’s home
directory:

$ pwd
/users/nelle/Downloads/filesystem/users/nelle
$

To understand what a “home directory” is, let’s have a look at how the
file system as a whole is organized. At the top is the root
directory that holds everything
else. We refer to it using a slash character / on its own; this is
the leading slash in /users/nelle.

Inside that directory are several other directories: bin (which is
where some built-in programs are stored), data (for miscellaneous
data files), users (where users’ personal directories are located),
tmp (for temporary files that don’t need to be stored long-term),
and so on:

We know that our current working directory /users/nelle is stored
inside /users because /users is the first part of its name.
Similarly, we know that /users is stored inside the root directory
/ because its name begins with /.

Let’s see what’s in Nelle’s home directory by running ls, which
stands for “listing”:

$ ls

creatures molecules pizza.cfg
data north-pacific-gyre solar.pdf
Desktop notes.txt writing

ls prints the names of the files and directories in the current
directory in alphabetical order, arranged neatly into columns. We can
make its output more comprehensible by using the
flag -F, which tells ls to add a
trailing / to the names of directories:

$ ls -F

creatures/ molecules/ pizza.cfg
data/ north-pacific-gyre/ solar.pdf
Desktop/ notes.txt writing/

Here, we can see that filesystem/users/nelle contains seven
sub-directories. The names that
don’t have trailing slashes, like notes.txt, pizza.cfg, and
solar.pdf, are plain old files. And note that there is a space
between ls and -F: without it, the shell thinks we’re trying to
run a command called ls-F, which doesn’t exist.

What’s In A Name?

You may have noticed that all of Nelle’s files’ names are “something
dot something”. This is just a convention: we can call a file
mythesis or almost anything else we want. However, most people
use two-part names most of the time to help them (and their
programs) tell different kinds of files apart. The second part of
such a name is called the filename
extension, and indicates
what type of data the file holds: .txt signals a plain text
file, .pdf indicates a PDF document, .cfg is a configuration
file full of parameters for some program or other, and so on.

This is just a convention, albeit an important one. Files contain
bytes: it’s up to us and our programs to interpret those bytes
according to the rules for PDF documents, images, and so on.

Naming a PNG image of a whale as whale.mp3 doesn’t somehow
magically turn it into a recording of whalesong, though it might
cause the operating system to try to open it with a music player
when someone double-clicks it.

Now let’s take a look at what’s in Nelle’s data directory by running
ls -F data, i.e., the command ls with the
arguments -F and data. The
second argument—the one without a leading dash—tells ls that we
want a listing of something other than our current working directory:

$ ls -F data

amino-acids.txt elements/ morse.txt
pdb/ planets.txt sunspot.txt

The output shows us that there are four text files and two
sub-sub-directories. Organizing things hierarchically in this way helps
us keep track of our work: it’s possible to put hundreds of files in our
home directory, just as it’s possible to pile hundreds of printed papers
on our desk, but it’s a self-defeating strategy.

Notice, by the way that we spelled the directory name data. It
doesn’t have a trailing slash: that’s added to directory names by ls
when we use the -F flag to help us tell things apart. And it doesn’t
begin with a slash because it’s a relative
path, i.e., it tells ls how to
find something from where we are, rather than from the root of the file
system.

If we run ls -F /data (with a leading slash) we get a different
answer, because /data is an absolute
path:

$ ls -F /data

access.log backup/ hardware.cfg
network.cfg

The leading / tells the computer to follow the path from the root of
the filesystem, so it always refers to exactly one directory, no matter
where we are when we run the command.

What if we want to change our current working directory? Before we do
this, pwd shows us that we’re in filesystem/users/nelle, and
ls without any arguments shows us that directory’s contents:

$ pwd

/Users/SWC/Downloads/filesystem/users/nelle

$ ls

creatures molecules pizza.cfg
data north-pacific-gyre solar.pdf
Desktop notes.txt writing

We can use cd followed by a directory name to change our working
directory. cd stands for “change directory”, which is a bit
misleading: the command doesn’t change the directory, it changes the
shell’s idea of what directory we are in.

$ cd data

cd doesn’t print anything, but if we run pwd after it, we can
see that we are now in
/Users/SWC/Downloads/filesystem/users/nelle/data. If we run ls
without arguments now, it lists the contents of
/Users/SWC/Downloads/filesystem/users/nelle/data, because that’s
where we now are:

$ pwd

/Users/SWC/Downloads/filesystem/users/nelle/data

$ ls -F

amino-acids.txt elements/ morse.txt
pdb/ planets.txt sunspot.txt

We now know how to go down the directory tree: how do we go up? We could
use an absolute path:

$ cd /users/nelle

but it’s almost always simpler to use cd .. to go up one level:

$ pwd

/users/nelle/data

$ cd ..

.. is a special directory name meaning “the directory containing
this one”, or more succinctly, the
parent of the current directory.
Sure enough, if we run pwd after running cd .., we’re back in
/users/nelle:

$ pwd

/users/nelle

The special directory .. doesn’t usually show up when we run ls.
If we want to display it, we can give ls the -a flag:

$ ls -F -a

./ Desktop/ pizza.cfg
../ molecules/ solar.pdf
creatures/ north-pacific-gyre/ writing/
data/ notes.txt

-a stands for “show all”; it forces ls to show us file and
directory names that begin with ., such as .. (which, if we’re
in /users/nelle, refers to the /users directory). As you can
see, it also displays another special directory that’s just called
., which means “the current working directory”. It may seem
redundant to have a name for it, but we’ll see some uses for it soon.

Orthogonality

The special names . and .. don’t belong to ls; they are
interpreted the same way by every program. For example, if we are in
filesystem/users/nelle/data, the command ls .. will give us
a listing of filesystem/users/nelle. When the meanings of the
parts are the same no matter how they’re combined, programmers say
they are orthogonal: Orthogonal
systems tend to be easier for people to learn because there are
fewer special cases and exceptions to keep track of.

Nelle’s Pipeline: Organizing Files

Knowing just this much about files and directories, Nelle is ready to
organize the files that the protein assay machine will create. First,
she creates a directory called north-pacific-gyre (to remind herself
where the data came from). Inside that, she creates a directory called
2012-07-03, which is the date she started processing the samples.
She used to use names like conference-paper and revised-results,
but she found them hard to understand after a couple of years. (The
final straw was when she found herself creating a directory called
revised-revised-results-3.)

Nelle names her directories “year-month-day”, with leading zeroes
for months and days, because the shell displays file and directory
names in alphabetical order. If she used month names, December would
come before July; if she didn’t use leading zeroes, November (‘11’)
would come before July (‘7’). This is the purpose of
ISO standard 8601 Representation of dates and times [http://en.wikipedia.org/wiki/ISO_8601]

Each of her physical samples is labelled according to her lab’s
convention with a unique ten-character ID, such as “NENE01729A”. This is
what she used in her collection log to record the location, time, depth,
and other characteristics of the sample, so she decides to use it as
part of each data file’s name. Since the assay machine’s output is plain
text, she will call her files NENE01729A.txt, NENE01812A.txt,
and so on. All 1520 files will go into the same directory.

If she is in her home directory, Nelle can see what files she has using
the command:

$ ls north-pacific-gyre/2012-07-03/

This is a lot to type, but she can let the shell do most of the work. If
she types:

$ ls nor

and then presses tab, the shell automatically completes the directory
name for her:

$ ls north-pacific-gyre/

If she presses tab again, Bash will add 2012-07-03/ to the command,
since it’s the only possible completion. Pressing tab again does
nothing, since there are 1520 possibilities; pressing tab twice brings
up a list of all the files, and so on. This is called tab
completion, and we will see it in
many other tools as we go on.

Key Points

	The file system is responsible for managing information on the disk.

	Information is stored in files, which are stored in directories
(folders).

	Directories can also store other directories, which forms a directory
tree.

	/ on its own is the root directory of the whole filesystem.

	A relative path specifies a location starting from the current
location.

	An absolute path specifies a location from the root of the
filesystem.

	Directory names in a path are separated with ‘/’ on Unix, but ‘\’ on
Windows.

	‘..’ means “the directory above the current one”; ‘.’ on its own
means “the current directory”.

	Most files’ names are something.extension. The extension isn’t
required, and doesn’t guarantee anything, but is normally used to
indicate the type of data in the file.

	Most commands take options (flags) which begin with a ‘-‘.

Exercises

If pwd displays /users/thing, what will ls ../backup
display?

	../backup: No such file or directory

	2012-12-01 2013-01-08 2013-01-27

	2012-12-01/ 2013-01-08/ 2013-01-27/

	original pnas_final pnas_sub

If pwd displays /users/backup, and -r tells ls to
display things in reverse order, what command will display:

pnas-sub/ pnas-final/ original/

	ls pwd

	ls -r -F

	ls -r -F /users/backup

	Either #2 or #3 above, but not #1.

What does the command cd without a directory name do?

	It has no effect.

	It changes the working directory to /.

	It changes the working directory to the user’s home directory.

	It produces an error message.

What does the command ls do when used with the -s and -h arguments?

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Files and Directories
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Creating Things

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Creating Things

Objectives

	Create a directory hierarchy that matches a given diagram.

	Create files in that hierarchy using an editor or by copying and
renaming existing files.

	Display the contents of a directory using the command line.

	Delete specified files and/or directories.

Making Directories

We now know how to explore files and directories, but how do we create
them in the first place? Let’s go back to Nelle’s home directory,
filesystem/users/nelle, and use ls -F to see what it contains:

$ pwd

/Users/SWC/Downloads/filesystem/users/nelle

$ ls -F

creatures/ molecules/ pizza.cfg
data/ north-pacific-gyre/ solar.pdf
Desktop/ notes.txt writing/

Let’s create a new directory called thesis using the command
mkdir thesis (which has no output):

$ mkdir thesis

As you might (or might not) guess from its name, mkdir means “make
directory”. Since thesis is a relative path (i.e., doesn’t have a
leading slash), the new directory is made below the current working
directory:

$ ls -F

creatures/ north-pacific-gyre/ thesis/
data/ notes.txt writing/
Desktop/ pizza.cfg
molecules/ solar.pdf

However, there’s nothing in it yet:

$ ls -F thesis

Let’s make a file

Let’s change our working directory to thesis using cd, then run
a text editor called Nano to create a file called draft.txt:

$ cd thesis
$ nano draft.txt

Which Editor?

When we say, “nano is a text editor,” we really do mean “text”:
it can only work with plain character data, not tables, images, or
any other human-friendly media. We use it in examples because almost
anyone can drive it anywhere without training, but please use
something more powerful for real work. On Unix systems (such as
Linux and Mac OS X), many programmers use
Emacs [http://www.gnu.org/software/emacs/] or
Vim [http://www.vim.org/] (both of which are completely
unintuitive, even by Unix standards), or a graphical editor such as
Gedit [http://projects.gnome.org/gedit/]. On Windows, you may
wish to use Notepad++ [http://notepad-plus-plus.org/].

No matter what editor you use, you will need to know where it
searches for and saves files. If you start it from the shell, it
will (probably) use your current working directory as its default
location. If you use your computer’s start menu, it may want to save
files in your desktop or documents directory instead. You can change
this by navigating to another directory the first time you “Save
As...”

Let’s type in a few lines of text, then use Control-O to write our data
to disk:

[image: ../_images/nano-screenshot.png]
Once our file is saved, we can use Control-X to quit the editor and
return to the shell. (Unix documentation often uses the shorthand ^A
to mean “control-A”.) nano doesn’t leave any output on the screen
after it exits, but ls now shows that we have created a file called
draft.txt:

$ ls

draft.txt

Let’s tidy up by running rm draft.txt:

$ rm draft.txt

This command removes files (“rm” is short for “remove”). If we run
ls again, its output is empty once more, which tells us that our
file is gone:

$ ls

Deleting Is Forever

Unix doesn’t have a trash bin: when we delete files, they are
unhooked from the file system so that their storage space on disk
can be recycled. Tools for finding and recovering deleted files do
exist, but there’s no guarantee they’ll work in any particular
situation, since the computer may recycle the file’s disk space
right away.

Let’s re-create that file and then move up one directory to
filesystem/users/nelle using cd ..:

$ pwd

/Users/SWC/Download/filesystem/users/nelle/thesis

$ nano draft.txt
$ ls

draft.txt

$ cd ..

If we try to remove the entire thesis directory using rm thesis,
we get an error message:

$ rm thesis

rm: cannot remove `thesis': Is a directory

This happens because rm only works on files, not directories. The
right command is rmdir, which is short for “remove directory”. It
doesn’t work yet either, though, because the directory we’re trying to
remove isn’t empty:

$ rmdir thesis

rmdir: failed to remove `thesis': Directory not empty

This little safety feature can save you a lot of grief, particularly if
you are a bad typist. To really get rid of thesis we must first
delete the file draft.txt:

$ rm thesis/draft.txt

The directory is now empty, so rmdir can delete it:

$ rmdir thesis

With Great Power Comes Great Responsibility

Removing the files in a directory just so that we can remove the
directory quickly becomes tedious. Instead, we can use rm with
the -r flag (which stands for “recursive”):

$ rm -r thesis # Warning! This can set you six years behind.

This removes everything in the directory, then the directory itself.
If the directory contains sub-directories, rm -r does the same
thing to them, and so on. It’s very handy, but can do a lot of
damage if used without care.

More Practice

Let’s create that directory and file one more time. (Note that this time
we’re running nano with the path thesis/draft.txt, rather than
going into the thesis directory and running nano on
draft.txt there.)

$ pwd

/users/nelle

$ mkdir thesis

$ nano thesis/draft.txt
$ ls thesis

draft.txt

draft.txt isn’t a particularly informative name, so let’s change the
file’s name using mv, which is short for “move”:

$ mv thesis/draft.txt thesis/quotes.txt

The first parameter tells mv what we’re “moving”, while the second
is where it’s to go. In this case, we’re moving thesis/draft.txt to
thesis/quotes.txt, which has the same effect as renaming the file.
Sure enough, ls shows us that thesis now contains one file
called quotes.txt:

$ ls thesis

quotes.txt

Just for the sake of inconsistency, mv also works on
directories—there is no separate mvdir command.

Let’s move quotes.txt into the current working directory. We use
mv once again, but this time we’ll just use the name of a directory
as the second parameter to tell mv that we want to keep the
filename, but put the file somewhere new. (This is why the command is
called “move”.) In this case, the directory name we use is the special
directory name . that we mentioned earlier.

$ mv thesis/quotes.txt .

The effect is to move the file from the directory it was in to the
current working directory. ls now shows us that thesis is empty:

$ ls thesis

Further, ls with a filename or directory name as a parameter only
lists that file or directory. We can use this to see that quotes.txt
is still in our current directory:

$ ls quotes.txt

quotes.txt

The cp command works very much like mv, except it copies a file
instead of moving it. We can check that it did the right thing using
ls with two paths as parameters—like most Unix commands, ls can
be given thousands of paths at once:

$ cp quotes.txt thesis/quotations.txt
$ ls quotes.txt thesis/quotations.txt

quotes.txt thesis/quotations.txt

To prove that we made a copy, let’s delete the quotes.txt file in
the current directory and then run that same ls again. This time it
tells us that it can’t find quotes.txt in the current directory, but
it does find the copy in thesis that we didn’t delete:

$ ls quotes.txt thesis/quotations.txt

ls: cannot access quotes.txt: No such file or directory
thesis/quotations.txt

Another Useful Abbreviation

The shell interprets the character ~ (tilde) at the start of a
path to mean “the current user’s home directory”. For example, if
Nelle’s home directory is /home/nelle, then ~/data is
equivalent to /home/nelle/data. This only works if it is the
first character in the path: here/there/~/elsewhere is not
/home/nelle/elsewhere.

Key Points

	Unix documentation uses ‘^A’ to mean “control-A”.

	The shell does not have a trash bin: once something is deleted, it’s
really gone.

	Nano is a very simple text editor—please use something else for real
work.

Exercises

What is the output of the closing ls command in the sequence shown
below?

$ pwd
/home/jamie/data
$ ls
proteins.dat
$ mkdir recombine
$ mv proteins.dat recombine
$ cp recombine/proteins.dat ../proteins-saved.dat
$ ls

Suppose that:

$ ls -F
analyzed/ fructose.dat raw/ sucrose.dat

What command(s) could you run so that the commands below will produce
the output shown?

$ ls
analyzed raw
$ ls analyzed
fructose.dat sucrose.dat

What does cp do when given several filenames and a directory name,
as in:

$ mkdir backup
$ cp thesis/citations.txt thesis/quotations.txt backup

What does cp do when given three or more filenames, as in:

$ ls -F
intro.txt methods.txt survey.txt
$ cp intro.txt methods.txt survey.txt

The command ls -R lists the contents of directories recursively,
i.e., lists their sub-directories, sub-sub-directories, and so on in
alphabetical order at each level. The command ls -t lists things by
time of last change, with most recently changed files or directories
first. In what order does ls -R -t display things?

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Creating Things
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Pipes and Filters

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Pipes and Filters

Objectives

	Redirect a command’s output to a file.

	Process a file instead of keyboard input using redirection.

	Construct command pipelines with two or more stages.

	Explain what usually happens if a program or pipeline isn’t given any
input to process.

	Explain Unix’s “small pieces, loosely joined” philosophy.

Multi-step operations with bash

Now that we know a few basic commands, we can finally look at the
shell’s most powerful feature: the ease with which it lets us combine
existing programs in new ways. We’ll start with a directory called
molecules that contains six files describing some simple organic
molecules. The .pdb extension indicates that these files are in
Protein Data Bank format, a simple text format that specifies the type
and position of each atom in the molecule.

$ ls molecules

cubane.pdb ethane.pdb methane.pdb
octane.pdb pentane.pdb propane.pdb

Let’s go into that directory with cd and run the command
wc *.pdb. wc is the “word count” command: it counts the number
of lines, words, and characters in files. The * in *.pdb matches
zero or more characters, so the shell turns *.pdb into a complete
list of .pdb files:

$ cd molecules
$ wc *.pdb

 20 156 1158 cubane.pdb
 12 84 622 ethane.pdb
 9 57 422 methane.pdb
 30 246 1828 octane.pdb
 21 165 1226 pentane.pdb
 15 111 825 propane.pdb
107 819 6081 total

Wildcards

* is a wildcard. It matches zero
or more characters, so *.pdb matches ethane.pdb,
propane.pdb, and so on. On the other hand, p*.pdb only
matches pentane.pdb and propane.pdb, because the ‘p’ at the
front only matches itself.

? is also a wildcard, but it only matches a single character.
This means that p?.pdb matches pi.pdb or p5.pdb, but not
propane.pdb. We can use any number of wildcards at a time: for
example, p*.p?* matches anything that starts with a ‘p’ and ends
with ‘.’, ‘p’, and at least one more character (since the ‘?’ has to
match one character, and the final ‘*’ can match any number of
characters). Thus, p*.p?* would match preferred.practice,
and even p.pi (since the first ‘*’ can match no characters at
all), but not quality.practice (doesn’t start with ‘p’) or
preferred.p (there isn’t at least one character after the ‘.p’).

When the shell sees a wildcard, it expands the wildcard to create a
list of matching filenames before running the command that was
asked for. This means that commands like wc and ls never see
the wildcard characters, just what those wildcards matched. This is
another example of orthogonal design.

If we run wc -l instead of just wc, the output shows only the
number of lines per file:

$ wc -l *.pdb

 20 cubane.pdb
 12 ethane.pdb
 9 methane.pdb
 30 octane.pdb
 21 pentane.pdb
 15 propane.pdb
107 total

We can also use -w to get only the number of words, or -c to get
only the number of characters.

Which of these files is shortest? It’s an easy question to answer when
there are only six files, but what if there were 6000? Our first step
toward a solution is to run the command:

$ wc -l *.pdb > lengths

The > tells the shell to redirect
the command’s output to a file instead of printing it to the screen. The
shell will create the file if it doesn’t exist, or overwrite the
contents of that file if it does. (This is why there is no screen
output: everything that wc would have printed has gone into the file
lengths instead.) ls lengths confirms that the file exists:

$ ls lengths

lengths

We can now send the content of lengths to the screen using
cat lengths. cat stands for “concatenate”: it prints the
contents of files one after another. There’s only one file in this case,
so cat just shows us what it contains:

$ cat lengths

 20 cubane.pdb
 12 ethane.pdb
 9 methane.pdb
 30 octane.pdb
 21 pentane.pdb
 15 propane.pdb
107 total

Now let’s use the sort command to sort its contents. We will also
use the -n flag to specify that the sort is numerical instead of
alphabetical. This does not change the file; instead, it sends the
sorted result to the screen:

$ sort -n lengths

 9 methane.pdb
 12 ethane.pdb
 15 propane.pdb
 20 cubane.pdb
 21 pentane.pdb
 30 octane.pdb
107 total

We can put the sorted list of lines in another temporary file called
sorted-lengths by putting > sorted-lengths after the command,
just as we used > lengths to put the output of wc into
lengths. Once we’ve done that, we can run another command called
head to get the first few lines in sorted-lengths:

$ sort -n lengths > sorted-lengths
$ head -1 sorted-lengths

9 methane.pdb

Using the parameter -1 with head tells it that we only want the
first line of the file; -20 would get the first 20, and so on. Since
sorted-lengths contains the lengths of our files ordered from least
to greatest, the output of head must be the file with the fewest
lines.

If you think this is confusing, you’re in good company: even once you
understand what wc, sort, and head do, all those
intermediate files make it hard to follow what’s going on. We can make
it easier to understand by running sort and head together:

$ sort -n lengths | head -1

9 methane.pdb

The vertical bar between the two commands is called a
pipe. It tells the shell that we want to use
the output of the command on the left as the input to the command on the
right. The computer might create a temporary file if it needs to, or
copy data from one program to the other in memory, or something else
entirely; we don’t have to know or care.

We can use another pipe to send the output of wc directly to
sort, which then sends its output to head:

$ wc -l *.pdb | sort -n | head -1

9 methane.pdb

This is exactly like a mathematician nesting functions like sin(πx)2
and saying “the square of the sine of x times π”. In our case, the
calculation is “head of sort of line count of *.pdb”.

Here’s what actually happens behind the scenes when we create a pipe.
When a computer runs a program—any program—it creates a
process in memory to hold the program’s
software and its current state. Every process has an input channel
called standard input. (By this
point, you may be surprised that the name is so memorable, but don’t
worry: most Unix programmers call it “stdin”. Every process also has a
default output channel called standard
output (or “stdout”).

The shell is actually just another program. Under normal circumstances,
whatever we type on the keyboard is sent to the shell on its standard
input, and whatever it produces on standard output is displayed on our
screen. When we tell the shell to run a program, it creates a new
process and temporarily sends whatever we type on our keyboard to that
process’s standard input, and whatever the process sends to standard
output to the screen.

Here’s what happens when we run wc -l *.pdb > lengths. The shell
starts by telling the computer to create a new process to run the wc
program. Since we’ve provided some filenames as parameters, wc reads
from them instead of from standard input. And since we’ve used > to
redirect output to a file, the shell connects the process’s standard
output to that file.

If we run wc -l *.pdb | sort -n instead, the shell creates two
processes (one for each process in the pipe) so that wc and sort
run simultaneously. The standard output of wc is fed directly to the
standard input of sort; since there’s no redirection with >,
sort‘s output goes to the screen. And if we run
wc -l *.pdb | sort -n | head -1, we get three processes with data
flowing from the files, through wc to sort, and from sort
through head to the screen.

This simple idea is why Unix has been so successful. Instead of creating
enormous programs that try to do many different things, Unix programmers
focus on creating lots of simple tools that each do one job well, and
that work well with each other. This programming model is called pipes
and filters. We’ve already seen
pipes; a filter is a program like wc
or sort that transforms a stream of input into a stream of output.
Almost all of the standard Unix tools can work this way: unless told to
do otherwise, they read from standard input, do something with what
they’ve read, and write to standard output.

The key is that any program that reads lines of text from standard input
and writes lines of text to standard output can be combined with every
other program that behaves this way as well. You can and should write
your programs this way so that you and other people can put those
programs into pipes to multiply their power.

Downlading data with redirection

Nelle is frustrated and decides to download some 16S sequences to pass
the time. She can download a collection of datafiles automatically.
There is a list of datasets in filesystem/data/metagenomics

	::

	$ cd ~/Downloads/filesystem/data/metagenomics
$ ls

datasetlist.sh generate_download_commands.sh

$

This command will download a dataset from the MG-RAST API and save it in sequences.fasta:

	::

	$ curl http://api.metagenomics.anl.gov/download/mgm4522007.3?file=050.1 > EbM1.fasta

If we examine this command line, we run the command “curl”; we give it a url with
id numbers for the dataset we want, and the output of curl is redirected to the
file EbM1.fasta.

generate_download_commands.sh uses columns 1 and 2 of the data table
to construct a list of commands like that above to download the data from MG-RAST.

To automatically download the first five, we run generate_download_commands.sh
and then run download-volta-data.sh:

	::

	$ bash generate_download_commands.sh
Generating download-volta-data.sh
$ bash download-volta-data.sh
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

Nelle’s Pipeline: Checking Files

Nelle has run her samples through the assay machines and created 1520
files in the north-pacific-gyre/2012-07-03 directory described
earlier. As a quick sanity check, she types:

$ cd north-pacific-gyre/2012-07-03
$ wc -l *.txt

The output is 1520 lines that look like this:

300 NENE01729A.txt
300 NENE01729B.txt
300 NENE01736A.txt
300 NENE01751A.txt
300 NENE01751B.txt
300 NENE01812A.txt
... ...

Now she types this:

$ wc -l *.txt | sort -n | head -5

240 NENE02018B.txt
300 NENE01729A.txt
300 NENE01729B.txt
300 NENE01736A.txt
300 NENE01751A.txt

Whoops: one of the files is 60 lines shorter than the others. When she
goes back and checks it, she sees that she did that assay at 8:00 on a
Monday morning—someone was probably in using the machine on the weekend,
and she forgot to reset it. Before re-running that sample, she checks to
see if any files have too much data:

$ wc -l *.txt | sort -n | tail -5

300 NENE02040A.txt
300 NENE02040B.txt
300 NENE02040Z.txt
300 NENE02043A.txt
300 NENE02043B.txt

Those numbers look good—but what’s that ‘Z’ doing there in the
third-to-last line? All of her samples should be marked ‘A’ or ‘B’; by
convention, her lab uses ‘Z’ to indicate samples with missing
information. To find others like it, she does this:

$ ls *Z.txt

NENE01971Z.txt NENE02040Z.txt

Sure enough, when she checks the log on her laptop, there’s no depth
recorded for either of those samples. Since it’s too late to get the
information any other way, she must exclude those two files from her
analysis. She could just delete them using rm, but there are
actually some analyses she might do later where depth doesn’t matter, so
instead, she’ll just be careful later on to select files using the
wildcard expression *[AB].txt. As always, the ‘*’ matches any
number of characters; the expression [AB] matches either an ‘A’ or a
‘B’, so this matches all the valid data files she has.

Key Points

	command > file redirects a command’s output to a file.

	first | second is a pipeline: the output of the first command is
used as the input to the second.

	The best way to use the shell is to use pipes to combine simple
single-purpose programs (filters).

Exercises

If we run sort on this file:

10
2
19
22
6

the output is:

10
19
2
22
6

If we run sort -n on the same input, we get this instead:

2
6
10
19
22

Explain why -n has this effect.

What is the difference between:

wc -l < mydata.dat

and:

wc -l mydata.dat

The command uniq removes adjacent duplicated lines from its input.
For example, if a file salmon.txt contains:

coho
coho
steelhead
coho
steelhead
steelhead

then uniq salmon.txt produces:

coho
steelhead
coho
steelhead

Why do you think uniq only removes adjacent duplicated lines?
(Hint: think about very large data sets.) What other command could you
combine with it in a pipe to remove all duplicated lines?

A file called animals.txt contains the following data:

2012-11-05,deer
2012-11-05,rabbit
2012-11-05,raccoon
2012-11-06,rabbit
2012-11-06,deer
2012-11-06,fox
2012-11-07,rabbit
2012-11-07,bear

What text passes through each of the pipes and the final redirect in the
pipeline below?

cat animals.txt | head -5 | tail -3 | sort -r > final.txt

The command:

$ cut -d , -f 2 animals.txt

produces the following output:

deer
rabbit
raccoon
rabbit
deer
fox
rabbit
bear

What other command(s) could be added to this in a pipeline to find out
what animals the file contains (without any duplicates in their names)?

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Pipes and Filters
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Loops

Objectives

	Write a loop that applies one or more commands separately to each
file in a set of files.

	Trace the values taken on by a loop variable during execution of the
loop.

	Explain the difference between a variable’s name and its value.

	Explain why spaces and some punctuation characters shouldn’t be used
in files’ names.

	Demonstrate how to see what commands have recently been executed.

	Re-run recently executed commands without retyping them.

Wildcards and tab completion are two ways to reduce typing (and typing
mistakes). Another is to tell the shell to do something over and over
again. Suppose we have several hundred genome data files named
basilisk.dat, unicorn.dat, and so on. In this example, we’ll use
the creatures directory which only has two example files, but the
principles can be applied to many many more files at once. When new
files arrive, we’d like to rename the existing ones to
original-basilisk.dat and original-unicorn.dat. We can’t use:

$ mv *.dat original-*.dat

because that would expand (in the two-file case) to:

$ mv basilisk.dat unicorn.dat

This wouldn’t back up our files: it would replace the content of
unicorn.dat with whatever’s in basilisk.dat.

Instead, we can use a loop to do some
operation once for each thing in a list. Here’s a simple example that
displays the first three lines of each file in turn:

$ for filename in basilisk.dat unicorn.dat
> do
> head -3 $filename
> done

COMMON NAME: basilisk
CLASSIFICATION: basiliscus vulgaris
UPDATED: 1745-05-02
COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24

When the shell sees the keyword for, it knows it is supposed to
repeat a command (or group of commands) once for each thing in a list.
In this case, the list is the two filenames. Each time through the loop,
the name of the thing currently being operated on is assigned to the
variable called filename. Inside the
loop, we get the variable’s value by putting $ in front of it:
$filename is basilisk.dat the first time through the loop,
unicorn.dat the second, and so on. Finally, the command that’s
actually being run is our old friend head, so this loop prints out
the first three lines of each data file in turn.

The shell prompt changes from $ to > and back again as we
were typing in our loop. The second prompt, >, is different to
remind us that we haven’t finished typing a complete command yet.

We have called the variable in this loop filename in order to make
its purpose clearer to human readers. The shell itself doesn’t care what
the variable is called; if we wrote this loop as:

for x in basilisk.dat unicorn.dat
do
 head -3 $x
done

or:

for temperature in basilisk.dat unicorn.dat
do
 head -3 $temperature
done

it would work exactly the same way. Don’t do this. Programs are only
useful if people can understand them, so meaningless names (like x)
or misleading names (like temperature) increase the odds that the
program won’t do what its readers think it does.

Here’s a slightly more complicated loop:

for filename in *.dat
do
 echo $filename
 head -100 $filename | tail -20
done

The shell starts by expanding *.dat to create the list of files it
will process. The loop body then
executes two commands for each of those files. The first, echo, just
prints its command-line parameters to standard output. For example:

$ echo hello there

prints:

hello there

In this case, since the shell expands $filename to be the name of a
file, echo $filename just prints the name of the file. Note that we
can’t write this as:

for filename in *.dat
do
 $filename
 head -100 $filename | tail -20
done

because then the first time through the loop, when $filename
expanded to basilisk.dat, the shell would try to run
basilisk.dat as a program. Finally, the head and tail
combination selects lines 81-100 from whatever file is being processed.

Filename expansion in loops is another reason you should not use
spaces in filenames. Suppose our data files are named:

basilisk.dat
red dragon.dat
unicorn.dat

If we try to process them using:

for filename in *.dat
do
 head -100 $filename | tail -20
done

then the shell will expand *.dat to create:

basilisk.dat red dragon.dat unicorn.dat

With older versions of Bash, or most other shells, filename will
then be assigned the following values in turn:

basilisk.dat
red
dragon.dat
unicorn.dat

That’s a problem: head can’t read files called red and
dragon.dat because they don’t exist, and won’t be asked to read
the file red dragon.dat.

We can make our script a little bit more robust by
quoting our use of the variable:

for filename in *.dat
do
 head -100 "$filename" | tail -20
done

but it’s simpler just to avoid using spaces (or other special
characters) in filenames.

Going back to our original file renaming problem, we can solve it using
this loop:

for filename in *.dat
do
 mv $filename original-$filename
done

This loop runs the mv command once for each filename. The first
time, when $filename expands to basilisk.dat, the shell
executes:

mv basilisk.dat original-basilisk.dat

The second time, the command is:

mv unicorn.dat original-unicorn.dat

Measure Twice, Run Once

A loop is a way to do many things at once—or to make many mistakes
at once if it does the wrong thing. One way to check what a loop
would do is to echo the commands it would run instead of actually
running them. For example, we could write our file renaming loop
like this:

for filename in *.dat
do
 echo mv $filename original-$filename
done

Instead of running mv, this loop runs echo, which prints
out:

mv basilisk.dat original-basilisk.dat
mv unicorn.dat original-unicorn.dat

without actually running those commands. We can then use up-arrow
to redisplay the loop, back-arrow to get to the word echo,
delete it, and then press “enter” to run the loop with the actual
mv commands. This isn’t foolproof, but it’s a handy way to see
what’s going to happen when you’re still learning how loops work.

Nelle’s Pipeline: Processing Files

Nelle is now ready to process her data files. Since she’s still learning
how to use the shell, she decides to build up the required commands in
stages. Her first step is to make sure that she can select the right
files—remember, these are ones whose names end in ‘A’ or ‘B’, rather
than ‘Z’:

$ cd north-pacific-gyre/2012-07-03
$ for datafile in *[AB].txt
> do
> echo $datafile
> done

NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...
NENE02043A.txt
NENE02043B.txt

Her next step is to decide what to call the files that the goostats
analysis program will create. Prefixing each input file’s name with
“stats” seems simple, so she modifies her loop to do that:

$ for datafile in *[AB].txt
> do
> echo $datafile stats-$datafile
> done

NENE01729A.txt stats-NENE01729A.txt
NENE01729B.txt stats-NENE01729B.txt
NENE01736A.txt stats-NENE01736A.txt
...
NENE02043A.txt stats-NENE02043A.txt
NENE02043B.txt stats-NENE02043B.txt

She hasn’t actually run goostats yet, but now she’s sure she can
select the right files and generate the right output filenames.

Typing in commands over and over again is becoming tedious, though, and
Nelle is worried about making mistakes, so instead of re-entering her
loop, she presses the up arrow. In response, the shell redisplays the
whole loop on one line (using semi-colons to separate the pieces):

$ for datafile in *[AB].txt; do echo $datafile stats-$datafile; done

Using the left arrow key, Nelle backs up and changes the command
echo to goostats:

$ for datafile in *[AB].txt; do bash goostats $datafile stats-$datafile; done

When she presses enter, the shell runs the modified command. However,
nothing appears to happen—there is no output. After a moment, Nelle
realizes that since her script doesn’t print anything to the screen any
longer, she has no idea whether it is running, much less how quickly.
She kills the job by typing Control-C, uses up-arrow to repeat the
command, and edits it to read:

$ for datafile in *[AB].txt; do echo $datafile; bash goostats $datafile stats-$datafile; done

Beginning and End
^^^^^^^^^^^^^^^^^

We can move to the beginning of a line in the shell by typing ``^A``
(which means Control-A) and to the end using ``^E``.

When she runs her program now, it produces one line of output every five
seconds or so:

NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...

1518 times 5 seconds, divided by 60, tells her that her script will take
about two hours to run. As a final check, she opens another terminal
window, goes into north-pacific-gyre/2012-07-03, and uses
cat stats-NENE01729B.txt to examine one of the output files. It
looks good, so she decides to get some coffee and catch up on her
reading.

Another way to repeat previous work is to use the history
command to get a list of the last few hundred commands that have
been executed, and then to use !123 (where “123” is replaced by
the command number) to repeat one of those commands. For example, if
Nelle types this:

$ history | tail -5
 456 ls -l NENE0*.txt
 457 rm stats-NENE01729B.txt.txt
 458 bash goostats NENE01729B.txt stats-NENE01729B.txt
 459 ls -l NENE0*.txt
 460 history

then she can re-run goostats on NENE01729B.txt simply by
typing !458.

Key Points

	A for loop repeats commands once for every thing in a list.

	Every for loop needs a variable to refer to the current “thing”.

	Use $name to expand a variable (i.e., get its value).

	Do not use spaces, quotes, or wildcard characters such as ‘*’ or ‘?’
in filenames, as it complicates variable expansion.

	Give files consistent names that are easy to match with wildcard
patterns to make it easy to select them for looping.

	Use the up-arrow key to scroll up through previous commands to edit
and repeat them.

	Use history to display recent commands, and !number to repeat
a command by number.

Exercises

Suppose that ls initially displays:

fructose.dat glucose.dat sucrose.dat

What is the output of:

for datafile in *.dat
do
 ls *.dat
done

In the same directory, what is the effect of this loop?

for sugar in *.dat
do
 echo $sugar
 cat $sugar > xylose.dat
done

	Prints fructose.dat, glucose.dat, and sucrose.dat, and
copies sucrose.dat to create xylose.dat.

	Prints fructose.dat, glucose.dat, and sucrose.dat, and
concatenates all three files to create xylose.dat.

	Prints fructose.dat, glucose.dat, sucrose.dat, and
xylose.dat, and copies sucrose.dat to create xylose.dat.

	None of the above.

The expr does simple arithmetic using command-line parameters:

$ expr 3 + 5
8
$ expr 30 / 5 - 2
4

Given this, what is the output of:

for left in 2 3
do
 for right in $left
 do
 expr $left + $right
 done
done

Describe in words what the following loop does.

for how in frog11 prcb redig
do
 $how -limit 0.01 NENE01729B.txt
done

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Loops
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Shell Scripts

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Shell Scripts

Objectives

	Write a shell script that runs a command or series of commands for a
fixed set of files.

	Run a shell script from the command line.

	Write a shell script that operates on a set of files defined by the
user on the command line.

	Create pipelines that include user-written shell scripts.

Now we’re cooking

We are finally ready to see what makes the shell such a powerful
programming environment. We are going to take the commands we repeat
frequently and save them in files so that we can re-run all those
operations again later by typing a single command. For historical
reasons, a bunch of commands saved in a file is usually called a shell
script, but make no mistake: these
are actually small programs.

Let’s start by going back to molecules/ and putting the following
line in the file middle.sh:

$ cd molecules
$ nano middle.sh

head -15 octane.pdb | tail -5

This is a variation on the pipe we constructed earlier: it selects lines
11-15 of the file octane.pdb. Remember, we are not running it as a
command just yet: we are putting the commands in a file.

Once we have saved the file, we can ask the shell to execute the
commands it contains. Our shell is called bash, so we run the
following command:

$ bash middle.sh

ATOM 9 H 1 -4.502 0.681 0.785 1.00 0.00
ATOM 10 H 1 -5.254 -0.243 -0.537 1.00 0.00
ATOM 11 H 1 -4.357 1.252 -0.895 1.00 0.00
ATOM 12 H 1 -3.009 -0.741 -1.467 1.00 0.00
ATOM 13 H 1 -3.172 -1.337 0.206 1.00 0.00

Sure enough, our script’s output is exactly what we would get if we ran
that pipeline directly.

Text vs. Whatever

We usually call programs like Microsoft Word or LibreOffice Writer
“text editors”, but we need to be a bit more careful when it comes
to programming. By default, Microsoft Word uses .docx files to
store not only text, but also formatting information about fonts,
headings, and so on. This extra information isn’t stored as
characters, and doesn’t mean anything to tools like head: they
expect input files to contain nothing but the letters, digits, and
punctuation on a standard computer keyboard. When editing programs,
therefore, you must either use a plain text editor, or be careful to
save files as plain text.

What if we want to select lines from an arbitrary file? We could edit
middle.sh each time to change the filename, but that would probably
take longer than just retyping the command. Instead, let’s edit
middle.sh and replace octane.pdb with a special variable called
$1:

$ cat middle.sh

head -20 $1 | tail -5

Inside a shell script, $1 means “the first filename (or other
parameter) on the command line”. We can now run our script like this:

$ bash middle.sh octane.pdb

ATOM 9 H 1 -4.502 0.681 0.785 1.00 0.00
ATOM 10 H 1 -5.254 -0.243 -0.537 1.00 0.00
ATOM 11 H 1 -4.357 1.252 -0.895 1.00 0.00
ATOM 12 H 1 -3.009 -0.741 -1.467 1.00 0.00
ATOM 13 H 1 -3.172 -1.337 0.206 1.00 0.00

or on a different file like this:

$ bash middle.sh pentane.pdb

ATOM 9 H 1 1.324 0.350 -1.332 1.00 0.00
ATOM 10 H 1 1.271 1.378 0.122 1.00 0.00
ATOM 11 H 1 -0.074 -0.384 1.288 1.00 0.00
ATOM 12 H 1 -0.048 -1.362 -0.205 1.00 0.00
ATOM 13 H 1 -1.183 0.500 -1.412 1.00 0.00

We still need to edit middle.sh each time we want to adjust the
range of lines, though. Let’s fix that by using the special variables
$2 and $3:

$ cat middle.sh

head $2 $1 | tail $3

$ bash middle.sh pentane.pdb -20 -5

ATOM 14 H 1 -1.259 1.420 0.112 1.00 0.00
ATOM 15 H 1 -2.608 -0.407 1.130 1.00 0.00
ATOM 16 H 1 -2.540 -1.303 -0.404 1.00 0.00
ATOM 17 H 1 -3.393 0.254 -0.321 1.00 0.00
TER 18 1

This works, but it may take the next person who reads middle.sh a
moment to figure out what it does. We can improve our script by adding
some comments at the top:

$ cat middle.sh

Select lines from the middle of a file.
Usage: middle.sh filename -end_line -num_lines
head $2 $1 | tail $3

A comment starts with a # character and runs to the end of the line.
The computer ignores comments, but they’re invaluable for helping people
understand and use scripts.

What if we want to process many files in a single pipeline? For example,
if we want to sort our .pdb files by length, we would type:

$ wc -l *.pdb | sort -n

because wc -l lists the number of lines in the files and sort -n
sorts things numerically. We could put this in a file, but then it would
only ever sort a list of .pdb files in the current directory. If we
want to be able to get a sorted list of other kinds of files, we need a
way to get all those names into the script. We can’t use $1, $2,
and so on because we don’t know how many files there are. Instead, we
use the special variable $*, which means, “All of the command-line
parameters to the shell script.” Here’s an example:

$ cat sorted.sh

wc -l $* | sort -n

$ bash sorted.sh *.pdb ../creatures/*.dat

9 methane.pdb
12 ethane.pdb
15 propane.pdb
20 cubane.pdb
21 pentane.pdb
30 octane.pdb
163 ../creatures/basilisk.dat
163 ../creatures/unicorn.dat

Why Isn’t It Doing Anything?

What happens if a script is supposed to process a bunch of files,
but we don’t give it any filenames? For example, what if we type:

$ bash sorted.sh

but don’t say *.dat (or anything else)? In this case, $*
expands to nothing at all, so the pipeline inside the script is

effectively:

wc -l | sort -n

Since it doesn’t have any filenames, wc assumes it is supposed
to process standard input, so it just sits there and waits for us to
give it some data interactively. From the outside, though, all we
see is it sitting there: the script doesn’t appear to do anything.

We have two more things to do before we’re finished with our simple
shell scripts. If you look at a script like:

wc -l $* | sort -n

you can probably puzzle out what it does. On the other hand, if you look
at this script:

List files sorted by number of lines.
wc -l $* | sort -n

you don’t have to puzzle it out—the comment at the top tells you what it
does. A line or two of documentation like this make it much easier for
other people (including your future self) to re-use your work. The only
caveat is that each time you modify the script, you should check that
the comment is still accurate: an explanation that sends the reader in
the wrong direction is worse than none at all.

Second, suppose we have just run a series of commands that did something
useful—for example, that created a graph we’d like to use in a paper.
We’d like to be able to re-create the graph later if we need to, so we
want to save the commands in a file. Instead of typing them in again
(and potentially getting them wrong) we can do this:

$ history | tail -4 > redo-figure-3.sh

The file redo-figure-3.sh now contains:

297 goostats -r NENE01729B.txt stats-NENE01729B.txt
298 goodiff stats-NENE01729B.txt /data/validated/01729.txt > 01729-differences.txt
299 cut -d ',' -f 2-3 01729-differences.txt > 01729-time-series.txt
300 ygraph --format scatter --color bw --borders none 01729-time-series.txt figure-3.png

After a moment’s work in an editor to remove the serial numbers on the
commands, we have a completely accurate record of how we created that
figure.

Nelle could also use colrm (short for “column removal”) to
remove the serial numbers on her previous commands. Its parameters
are the range of characters to strip from its input:

$ history | tail -5
 173 cd /tmp
 174 ls
 175 mkdir bakup
 176 mv bakup backup
 177 history | tail -5
$ history | tail -5 | colrm 1 7
cd /tmp
ls
mkdir bakup
mv bakup backup
history | tail -5
history | tail -5 | colrm 1 7

In practice, most people develop shell scripts by running commands at
the shell prompt a few times to make sure they’re doing the right thing,
then saving them in a file for re-use. This style of work allows people
to recycle what they discover about their data and their workflow with
one call to history and a bit of editing to clean up the output and
save it as a shell script.

Nelle’s Pipeline: Creating a Script

An off-hand comment from her supervisor has made Nelle realize that she
should have provided a couple of extra parameters to goostats when
she processed her files. This might have been a disaster if she had done
all the analysis by hand, but thanks to for loops, it will only take a
couple of hours to re-do.

But experience has taught her that if something needs to be done twice,
it will probably need to be done a third or fourth time as well. She
runs the editor and writes the following:

Calculate reduced stats for data files at J = 100 c/bp.
for datafile in $*
do
 echo $datafile
 goostats -J 100 -r $datafile stats-$datafile
done

(The parameters -J 100 and -r are the ones her supervisor said
she should have used.) She saves this in a file called do-stats.sh
so that she can now re-do the first stage of her analysis by typing:

$ bash do-stats.sh *[AB].txt

She can also do this:

$ bash do-stats.sh *[AB].txt | wc -l

so that the output is just the number of files processed rather than the
names of the files that were processed.

One thing to note about Nelle’s script is that it lets the person
running it decide what files to process. She could have written it as:

Calculate reduced stats for A and Site B data files at J = 100 c/bp.
for datafile in *[AB].txt
do
 echo $datafile
 goostats -J 100 -r $datafile stats-$datafile
done

The advantage is that this always selects the right files: she doesn’t
have to remember to exclude the ‘Z’ files. The disadvantage is that it
always selects just those files—she can’t run it on all files
(including the ‘Z’ files), or on the ‘G’ or ‘H’ files her colleagues in
Antarctica are producing, without editing the script. If she wanted to
be more adventurous, she could modify her script to check for
command-line parameters, and use *[AB].txt if none were provided. Of
course, this introduces another tradeoff between flexibility and
complexity.

Key Points

	Save commands in files (usually called shell scripts) for re-use.

	bash filename runs the commands saved in a file.

	$* refers to all of a shell script’s command-line parameters.

	$1, $2, etc., refer to specified command-line parameters.

	Letting users decide what files to process is more flexible and more
consistent with built-in Unix commands.

Exercises

Leah has several hundred data files, each of which is formatted like
this:

2013-11-05,deer,5
2013-11-05,rabbit,22
2013-11-05,raccoon,7
2013-11-06,rabbit,19
2013-11-06,deer,2
2013-11-06,fox,1
2013-11-07,rabbit,18
2013-11-07,bear,1

Write a shell script called species.sh that takes any number of
filenames as command-line parameters, and uses cut, sort, and
uniq to print a list of the unique species appearing in each of
those files separately.

Write a shell script called longest.sh that takes the name of a
directory and a filename extension as its parameters, and prints out the
name of the file with the most lines in that directory with that
extension. For example:

$ bash longest.sh /tmp/data pdb

would print the name of the .pdb file in /tmp/data that has the
most lines.

If you run the command:

history | tail -5 > recent.sh

the last command in the file is the history command itself, i.e.,
the shell has added history to the command log before actually
running it. In fact, the shell always adds commands to the log before
running them. Why do you think it does this?

Joel’s data directory contains three files: fructose.dat,
glucose.dat, and sucrose.dat. Explain what a script called
example.sh would do when run as bash example.sh *.dat if it
contained the following lines:

Script 1
echo *.*

Script 2
for filename in $1 $2 $3
do
 cat $filename
done

Script 3
echo $*.dat

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Shell Scripts
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Getting started with Amazon EC2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Getting started with Amazon EC2

	Logging into your new instance “in the cloud”
	Declare victory

	Amazon Web Services reference material

Amazon Web Services reference material

You can find help online
configuring, managing, and otherwise using EC2’s
interface.

Instance types [http://aws.amazon.com/ec2/instance-types/]
Instance costs [http://aws.amazon.com/ec2/pricing/]

You can find a more detailed walkthrough (with more
steps!) at the 2013 CEMI workshop at Caltech [http://2013-caltech-workshop.readthedocs.org/en/latest/].

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Getting started with Amazon EC2
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Logging into your new instance “in the cloud”

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

 	Getting started with Amazon EC2

Logging into your new instance “in the cloud”

OK, so we have rented a computer for you. It will be yours
alone for the rest of the day, and it is a blank slate.
It doesn’t have blast (yet) and doesn’t have any data.

If you are on windows and weren’t here yesterday, you need to
install git bash: git bash [http://msysgit.github.io/].

The network name of your new computer we gave you on a scrap
of paper.

The username for your instance will be “ubuntu”.

First, you must download the private key file from here: soils.zip [http://www.mcs.anl.gov/~trimble/nodi/soils.zip]

This gives us a compressed (and encrypted) zip file.

First, we need to uncompress it. You might be able to uncompress it
automatically by clicking on it and entering the password, but:

cd ~/Downloads
unzip soils.zip

should be enough to give you soils.pem.

When you have soils.pem, move it onto your desktop.

Next, start Terminal (for mac) or gitbash (for windows) and type:

chmod og-rwx ~/Desktop/soils.pem

to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/soils.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com

(Where you need to put the address for your machine, distributed on a
sheet of paper, here)

This is the command that opens a bash connection to control your private
instance in the cloud.

This command uses ‘soils.pem’ as the private key, uses ubuntu as the
user name, and opens an encrypted connection and a bash shell on the
‘ec2-???-???-???-???.compute-1.amazonaws.com’ server.

Declare victory

At the end you should see text and a prompt that look like this:

[image: ../_images/victory-win.png]
or, on mac:

[image: ../_images/victory-mac.png]
Congratulations, you now have CONTROL of your own EC2 server.

We will keep these servers running for the rest of the day;
if you want one for longer than that, you need $.06/hour
willingness to make it happen. (Think about it.)

Amazon Web Services reference material

You can find help online configuring, managing, and otherwise using EC2’s
interface.

	Instance types [http://aws.amazon.com/ec2/instance-types/]

	Instance costs [http://aws.amazon.com/ec2/pricing/]

For this workshop, we provided 40 instances that were blank
except for the soils.pem key.

If you would like to learn about instances on your own, try
the original 2013 CEMI workshop at Caltech [http://2013-caltech-workshop.readthedocs.org/en/latest/]
workshop, which includes instructions on how to start instances
from scratch.

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Logging into your new instance “in the cloud”
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Basic EC2, command line, and BLAST

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Basic EC2, command line, and BLAST

Log into your cloud instance machine with SSH (described in Getting started with Amazon EC2) and we can start to

	get the tools

	get the data

	get the comparison data

	run the tools

	get the data off

Install BLAST and some other software

You should be starting at the prompt that looks something like 'ubuntu@ip-10-98-166-81:~$’, inside your Terminal or gitbash window.

This is now not bash on your local machine, but bash on amazon’s cloud instance.

The instance we’ve started for you is a blank slate. It has bash,
but little else. No blast, no genomes, no bwa...

Now that we are in the cloud, download and install BLAST:

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.26/blast-2.2.26-x64-linux.tar.gz
tar xzf blast-2.2.26-x64-linux.tar.gz
sudo cp blast-2.2.26/bin/* /usr/local/bin
sudo cp -r blast-2.2.26/data /usr/local/blast-data

Download and install some useful scripts::

sudo apt-get -y install git python-pip
sudo git clone https://github.com/ngs-docs/ngs-scripts /usr/local/share/ngs-scripts

Create a working directory on a large disk, and change to that working
directory:

cd /mnt
sudo chown $USER /mnt
mkdir blast
cd blast

Download the E. coli MG1655 protein data set:

curl -O http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/NC_000913.faa

This grabs that URL and saves the contents of ‘NC_000913.faa’ to the local
disk.

Grab a Prokka-generated set of proteins

curl -O http://athyra.idyll.org/~t/ecoli0104.faa

Let’s take a quick look at these files:

head ecoli0104.faa
head NC_000913.faa

Format it for BLAST and run BLAST of the O104 protein set against the
MG1655 protein set:

formatdb -i NC_000913.faa -o T -p T
blastall -i ecoli0104.faa -d NC_000913.faa -p blastp -e 1e-12 -o 0104.x.NC

Look at the output file:

head 0104.x.NC

Let’s convert ‘em to a CSV file:

sudo pip install screed
python /usr/local/share/ngs-scripts/blast/blast-to-csv-with-names.py ecoli0104.faa NC_000913.faa 0104.x.NC > 0104.x.NC.csv

This creates a file ‘0104.x.NC.csv’, which you an open in Excel.

The notes from the Berkeley workshop show you how to synchronize
high-value, output files on your instance using Dropbox. This
tutorial does not show off this neat feature.

But we will copy the spreadsheet onto your computer using scp.

In a new Terminal or gitbash window (one that is NOT running SSH into
your instance), type:

scp -i ~/Desktop/soils.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com:/mnt/blast/0104.x.NC.csv .

(Note: there is a period at the end of this line. It is essential.
scp USER@HOST:DIRECTORY/FILENAME DESTINATION)

(Why does it need to be a new terminal window? Your first terminal window
is busy running SSH into the cloud instance, and your cloud instance
is not authorized to write files to your laptop.)

This will copy the output file 0104.x.NC.csv to your current directory
where you can open it, say, with excel.

Reciprocal BLAST calculation

Do the reciprocal BLAST, too:

formatdb -i ecoli0104.faa -o T -p T
blastall -i NC_000913.faa -d ecoli0104.faa -p blastp -e 1e-12 -o NC.x.0104

Extract reciprocal best hit:

python /usr/local/share/ngs-scripts/blast/blast-to-ortho-csv.py ecoli0104.faa NC_000913.faa 0104.x.NC NC.x.0104 > ortho.csv

This generates a file ‘ortho.csv’, containing the ortholog assignments and
their annotations.:

scp -i ~/Desktop/soils.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com:/mnt/blast/ortho.csv .

A few post-tutorial links

Explore the NCBI bacterial genome site here: http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria

	‘.faa’ files are protein data sets;

	‘.fna’ files are genomic DNA;

	the rest are annotation files of various kinds.

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Basic EC2, command line, and BLAST
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Mapping with bwa

 Navigation

 	
 index

 	
 previous |

 	2014 Argonne Soils Workshop automation workshop

Mapping with bwa

One of the most common operations when dealing with NGS data is mapping sequences
to other sequences, and most commonly, mapping reads to a reference. Because
short read alignment is so common, there is a deluge of programs available for doing
it, and it is well-understood problem. Most of the efficient programs work by first
building an index of the sequence that will be mapped to, which allows for
extremely fast lookups, and then running a separate module which uses that index
to align short sequences against the reference. Alignment is used for visualization,
coverage estimation, SNP calling, expression analysis, and a slew of other problems.
For a high-level overview, try this NCBI review [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836519/].

Getting the Dependencies

bwa is one of the many available fast read mappers that uses the Burrows-Wheeler
transform to speed up finding exact and near-exact matches in the database.
A review can be found
here [http://bioinformatics.oxfordjournals.org/content/25/14/1754.short].

The original verison of this lesson [http://2013-caltech-workshop.readthedocs.org/en/latest/bwa_mapping.html]
had instructions to download, uncompress, make, and install bwa.

We can get bwa on ubuntu with

sudo apt-get install bwa

This may not get us the most recent version of bwa, but the last version that was
bundled for ubuntu. Now we have bwa, and we didn’t have to brave a grumpy sysadmin
to install it for us. On the cloud, you are your own sysadmin.

Getting the Data

First, we will create a new directory to contain our bwa alignments (separate
from our blast alignments in the previous lesson):

cd /mnt
mkdir ecoli
cd ecoli

We’ll be using the data we downloaded during the reads and quality control session;
if you missed that, you’ll eventually want to run through it in Understanding Read Formats and Quality Controlling Data,
but for now, you can just grab the quality-controlled data with:

curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.pe.qc.fq.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.se.qc.fq.gz

This download takes about ten minutes to put on our instances.

You’ll also need a reference genome, which can be acquired with:

curl -O http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_O104_H4_2011C_3493_uid176127/NC_018658.fna

which downloads the reference genome from NCBI.

Mapping the Reads

To speed up the demonstration, we will just map a subset of the reads rather than
the entire file, which is somewhat large (though small compared to many datasets).
The head command outputs the first n lines of a file, by default 4:

gunzip -c ../SRR390202.pe.qc.fq.gz | head -400000 > ecoli_pe.fq
gunzip -c ../SRR390202.se.qc.fq.gz | head -400000 > ecoli_se.fq

We’ve got our reads and a reference, so we’re ready to get started. First, we
build an index of the reference genome using bwa:

mv ../NC_018658.fna .
bwa index -a bwtsw NC_018658.fna

The -a flag tells bwa which indexing algorithm to use. The program will automatically
output some files with set extensions, which the main alignment program knows the
format of. Thus, we run the alignment like so:

bwa mem -p NC_018658.fna ecoli_pe.fq > aln.x.ecoli_NC_018658.sam

which aligns the left and right reads against the reference, and outputs them
to the given SAM file. SAM is a common format for alignments which is understood
by many programs, along with BAM. It’s often useful to have both, so we’ll use
a utility called samtools to produce a sorted BAM file as well. First,
install samtools:

cd /mnt
curl -O -L http://sourceforge.net/projects/samtools/files/samtools/0.1.18/samtools-0.1.18.tar.bz2
tar xvfj samtools-0.1.18.tar.bz2
cd samtools-0.1.18
make
cp samtools /usr/local/bin
cd misc/
cp *.pl maq2sam-long maq2sam-short md5fa md5sum-lite wgsim /usr/local/bin/
cd ..
cd bcftools
cp *.pl bcftools /usr/local/bin/

Then, run samtools to do the conversion:

cd /mnt/ecoli
samtools view -uS aln.x.ecoli_NC_018658.sam > aln.x.ecoli_NC_018658.bam
samtools sort aln.x.ecoli_NC_018658.bam aln.x.ecoli_NC_018658.bam.sorted
samtools index aln.x.ecoli_NC_018658.bam.sorted.bam

For additional resources on these tools, check out:

	the bwa manual [http://bio-bwa.sourceforge.net/bwa.shtml]

	info on samtools [http://samtools.sourceforge.net/]

	the SAM format spec [http://samtools.sourceforge.net/SAM1.pdf]

Visualizing your Data with Tablet

Copy your mapping files to your local machine :

	:

	scp -i soils.pem ubuntu@yourinstance:/mnt/ecoli/aln.x.ecoli_NC_018658.bam.sorted.bam* .
scp -i soils.pem ubuntu@yourinstance/mnt/ecoli/NC_018658.fna .

Although you can do many things with your alignments, one useful thing is to simply
view them through a graphical interface. To demonstrate this, we’ll use a program
called Tablet, which can be downloaded here [http://bioinf.scri.ac.uk/tablet/download.shtml].

Tablet claims to run on Windows, Linux, and OSX, though I have only tested it out
on Linux. Because this is a GUI-driven program, we’ll be running it on our
local machines instead of our EC2 instances. So, go ahead and grab the appropriate
version for your system, and install it.

Once you have it installed, open it up. You’ll want to load your mapping file
and reference genome:

[image: _images/tablet_open.png]
You’ll then get some loading bars, and potentially an error about the indexing file
which can be ignored. You need to select a contig on the left to view; ecoli has
a very good reference, and is only one contig:

[image: _images/tablet_view.png]
You can move left and right along the contig, as well as zoom. Tablet can view
other information like gene structure, but we won’t get into that.

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 	
 Go to

 Mapping with bwa
 on GitHub.

 	
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 	
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 	
 Then click Send a pull request.

 	
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

 Index

 Navigation

 	
 index

 	2014 Argonne Soils Workshop automation workshop

Index

 Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

_static/comment.png

more-resources.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

More resources for help

For bioinformatics, generally, see BioStars [http://biostars.org].

For sequencing information, see SEQanswers [http://seqanswers.com].

For (lots!) more tutorials from the GED lab [http://ged.msu.edu/], see the
ANGUS resource [http://ged.msu.edu/angus/].

For more general computational science help, see Software Carpentry [http://software-carpentry.org], especially the Software Carpentry
lessons [http://software-carpentry.org/4_0/index.html]. It
contains a large number of open and reusable tutorials on the shell,
programming, version control, etc.

Blogs

		http://www.genomesunzipped.org/

Genomes Unzipped.

		http://ivory.idyll.org/blog/

Titus’s blog.

		http://bcbio.wordpress.com/

Blue Collar Bioinformatics

		http://massgenomics.org/

Mass Genomics

		http://blog.nextgenetics.net/

Next Genetics

		http://gettinggeneticsdone.blogspot.com/

Getting Genetics Done

		http://omicsomics.blogspot.com/

Omics! Omics!

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 More resources for help
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/comment-bright.png

reads_and_qc.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Understanding Read Formats and Quality Controlling Data

Note: there are generic instructions for doing quality control at the
khmer-protocols Web site [https://khmer-protocols.readthedocs.org/]. These should work for
most Illumina data sets, even those consisting of multiple files.
Below, we’ve done a bit of a shorthand because we only have a small
data set to filter.

The fastq Format

After spending weeks, nay, months of time on designing your study and planning your
bioinformatics goals (right?), you finally get the email from you sequencing
center: they have your data! You get a link to an ftp server and some login information,
and are presented with a list of files. But what are these formats?

Most commonly, you’ll get your data in fastq format. fastq is a really simple
way of representing sequence in plain text which is understood by pretty much
every piece of bioinformatics software. A fastq file can contain anywhere from
one to billions of sequences, and is usually used for reads before they have been
assembled. A faux example of the format is:

@read1
+
ATCGTAGCTAGCTAGCT
+
DH<F4CFDFH@FHIBBE

The first line is the name of the sequence; there is no set format for this, though
most of the big centers like the NCBI have set standards. This is followed by
a ‘+’, a line break, and then the sequence itself, which can be either nucleotide or protein.
Then we have another line break, a ‘+’, and a line break, followed by the quality line.

The quality line is the part of the format which is not immediately obvious. This line follows
what is known as the phred format. Each ASCII character corresponds to a base,
and its integer mapping is used in the equation \(P = 10^{-Q / 10}\),
where \(Q\) is the phred score and \(P\) is the probability that the base
is incorrectly called.

The counterpart to fastq is fasta, which is essentially fastq without the quality
score and a minor formatting change:

>read1
ATCGTAGGTAGGATATA

fasta is usually output by assembly programs, and can be used if data has already
been quality controlled and needs to be a more manageable size. However, if you’re
not sure what preprocessing steps your data has been through, but you have fasta
instead of fastq, you’d be well-off to make sure of what those steps were.

Getting the Data

Now that you know a little about the format, let’s get some data. The data set
we’ll be using is from everyone’s favorite bacterium, ecoli. We’ll use the
command line tool curl to download it to our Amazon machines:

cd /mnt
mkdir ecoli
cd ecoli
curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR390/SRR390202/SRR390202_1.fastq.gz
curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR390/SRR390202/SRR390202_2.fastq.gz

The data came from this [http://www.ncbi.nlm.nih.gov/pubmed/22522955] study,
if you’re interested.

To take a quick look at the files, use less:

less SRR390202_1.fastq.gz

Hit ‘q’ to quit less.

These reads are compressed with gzip to save some space, and are in two files,
because they are paired – the first read in SRR390202_1.fastq.gz
is paired with the first read in SRR390202_2.fastq.gz and so on. Some programs
prefer paired reads to be interleaved, that is, in the same file alternating between
the first and second read pair. Many programs also require the name field in
the fasta/q to explicitly state which part of a pair a read is with a /1 or /2; for example,
in an interleaved file, you might have:

@SRR390202.1 M10_0139:1:2:18915:1321/1
ATCAAGAAAGATTTTAACAGCATTGAC
+
ECCFFFDDHGHFDHJJJJIGIDIJJJJ
@SRR390202.1 M10_0139:1:2:18915:1321/2
GTTCATAGTGACAAGGTAATATTTGTC
+
FDFFFFHHGGIJIF?CIGJJGI@FEFH

Naturally, because this is a standard, almost every program has a different way of
doing it. So, be sure to double check the pairing format in your data!

Getting the Dependencies

Before we can work with our data, we need to grab a few more dependencies. We’ll download screed, which is
a simple python module for parsing fasta files developed by our lab at MSU:

pip install screed

And then khmer, which is a Python interface to a really fast (and awesome) piece
of software for counting k-mers, also developed by our lab (more on that later):

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout 2013-caltech-cemi
make

Now that we’ve downloaded and built khmer, we’ll add it to the system’s python
PATH so that our scripts know where to find it:

echo 'export PYTHONPATH=/usr/local/share/khmer/python' >> ~/.bashrc
source ~/.bashrc

Get Trimmomatic, which is used for adapter removal and quality filtering:

curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.30.zip
unzip Trimmomatic-0.30.zip
cd Trimmomatic-0.30/
cp trimmomatic-0.30.jar /usr/local/bin
cp -r adapters /usr/local/share/adapters

And then fastx, and its dependencies, which is another tool for quality filtering:

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

And finally, FastQC, which is a program for assessing quality, finding contaminants,
and generally producing nice plots:

apt-get -y install lighttpd

Now, configure:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf
/etc/init.d/lighttpd restart

And install FastQC:

cd /usr/local/share
curl -O http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
unzip fastqc_v0.10.1.zip
chmod +x FastQC/fastqc

Assessing your Data with FastQC

First we’re going to separate out a subset of the reads for demonstrative
purposes; otherwise, things take way too long:

cd /mnt/ecoli
gunzip -c SRR390202_1.fastq.gz | head -n 400000 > SRR390202_1.head.fastq
gunzip -c SRR390202_2.fastq.gz | head -n 400000 > SRR390202_2.head.fastq

Before you go wildly charging at your data with trimmers and filters, it’s always
a good idea to know what your data looks like ahead of time. The program we will
use for this is FastQC, which parses the quality information from all the reads
and produces handy charts and statistics:

mkdir /var/www/ecoli_fastqc
/usr/local/share/FastQC/fastqc SRR390202_1.head.fastq SRR390202_2.head.fastq -o /var/www/ecoli_fastqc

In the previous step, we actually also installed a very lightweight http server.
This allows you to host things publicly on your instance and view it through a
browser, which in some cases avoids having to download the data to your computer.
In the last command, we put our output in the web server’s folder, so let’s go
ahead and access it. In a new browser tab, go to:

http://ec2-???????????.compute-1.amazonaws.com/ecoli_fastqc/

replacing the question marks with your EC2 URL. You should be presented with
something like this [http://ec2-50-16-8-137.compute-1.amazonaws.com/ecoli_fastqc/].
There is a folder for each of your sequence files, each of which contains a file
called fastqc_report.html. Clicking on that file will render the report
in your browser.

Trimming Your Data

Based on the FastQC report for the reads, we should probably quality trim them.
Although there aren’t any flagged overrepresented sequences, it’s good practice
to filter for adapters as well, which can confound assemblers. Trimmomatic can
both filter adapters and quality trim, though we’ll only use it for adapter removal
here:

mkdir trim
cd trim
java -jar /usr/local/bin/trimmomatic-0.30.jar PE ../SRR390202_1.head.fastq ../SRR390202_2.head.fastq s1_pe s1_se s2_pe s2_se ILLUMINACLIP:/usr/local/share/adapters/TruSeq3-PE.fa:2:30:10

fastx is an alternative which performs many of the same functions as Trimmomatic.
We’ll use it for quality filtering; the following flags direct its fastq_quality_filter
module to keep reads if 50% of the bases have a quality score over 30:

/usr/local/share/khmer/scripts/interleave-reads.py s1_pe s2_pe > combined.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_pe > s1_se.filt

We also interleaved the reads in the previous block, as fastx requires it. We’ll
now separate out the reads which had their pair thrown out into their own file,
combine them with the output of Trimmomatic, and compress the results:

/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq
cat combined-trim.fq.se s1_se.filt | gzip -9c > ../SRR390202.head.se.qc.fq.gz
gzip -9c combined-trim.fq.pe > ../SRR390202.head.pe.qc.fq.gz

Finally, move up a directory and get rid of all the unneeded intermediate files:

cd ../
rm -fr trim

Reassess Data Quality

Once the reads have been quality-controlled, we should check to make sure that our
measures were actually helpful:

mkdir /var/www/ecoli_qc_fastqc
/usr/local/share/FastQC/fastqc SRR390202.head.pe.qc.fq.gz SRR390202.head.se.qc.fq.gz -o /var/www/ecoli_qc_fastqc

Check the output the same way as above.

The Trimmed Data

We only quality-controlled a subset of the reads, but we’ll want all of them later
on. To that end, we’ve run the programs on the full data, which you can download with:

curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.pe.qc.fq.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.se.qc.fq.gz

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Understanding Read Formats and Quality Controlling Data
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/Soil-digital-logo.png

bwa-notes.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

 cd /root
curl -L “http://downloads.sourceforge.net/project/bio-bwa/bwa-0.7.5a.tar.bz2?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbio-bwa%2Ffiles%2F&ts=1379347638&use_mirror=softlayer-dal” > bwa-0.7.5a.tar.bz2
tar xjf bwa-0.7.5a.tar.bz2

cd bwa-0.7.5a/
make
cp bwa /usr/local/bin

pip install screed

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout 2013-caltech-cemi
make

echo ‘export PYTHONPATH=/usr/local/share/khmer/python’ >> ~/.bashrc
source ~/.bashrc

—

curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.30.zip
unzip Trimmomatic-0.30.zip
cd Trimmomatic-0.30/
cp trimmomatic-0.30.jar /usr/local/bin
cp -r adapters /usr/local/share/adapters

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

cd /usr/local/share
curl -O http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
unzip fastqc_v0.10.1.zip
chmod +x FastQC/fastqc

—

note adapters

—

spades: http://bioinf.spbau.ru/spades

apt-get -y install cmake

wget http://spades.bioinf.spbau.ru/release2.5.1/SPAdes-2.5.1.tar.gz
tar -xzf SPAdes-2.5.1.tar.gz
cd SPAdes-2.5.1
PREFIX=/usr/local ./spades_compile.sh

—

java -jar /usr/local/bin/trimmomatic-0.30.jar PE ../SRR390202_1.fastq.gz ../SRR390202_2.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:/usr/local/share/adapters/TruSeq3-PE.fa:2:30:10
/usr/local/share/khmer/scripts/interleave-reads.py s1_pe s2_pe > combined.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_pe > s1_se.filt

/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq
cat combined-trim.fq.se s1_se.filt | gzip -9c > ../SRR390202.se.qc.fq.gz

gzip -9c combined-trim.fq.pe > ../SRR390202.pe.qc.fq.gz

get the reads
curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli_ref-5m.fastq.gz

split the paired reads into their left and right components
python /usr/local/share/khmer/scripts/split-paired-reads.py ecoli_ref-5m.fastq.gz

get a reference genome
curl http://www.genome.wisc.edu/pub/sequence/U00096.2.fas > ecoli_k12.fa

build the FM-index of the reference for the alignment algorithm
bwa index -a bwtsw ecoli_k12.fa

just grab a subset of the reads for demonstration purposes
head -n 50000 ecoli_ref-5m.fastq.gz.1 > left.fa
head -n 50000 ecoli_ref-5m.fastq.gz.2 > right.fa

perform the alignment using bwa mem and output to same
bwa mem -t 4 ecoli_k12.fa left.fa right.fa > aln.x.ecoli_k12.sam

now convert the output to bam and sorted bam for viewing
with your viewer of choice, say table
samtools view -uS aln.x.ecoli_k12.sam > aln.x.ecoli_k12.bam
samtools sort aln.x.ecoli_k12.bam aln.x.ecoli_k12.bam.sorted
samtools index aln.x.ecoli_k12.bam.sorted.bam

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 <no title>
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/up.png

_static/plus.png

blastkit.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr
pip install whoosh
pip install git+https://github.com/ctb/pygr-draw.git
pip install git+https://github.com/ged-lab/screed.git
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

Take an assembly of interest, and copy it into /root/blaskit/db/db.fa; e.g.

cp /mnt/assembly/ecoli.21/contigs.fa /root/blastkit/db/db.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db.fa -o T -p F
python index-db.py db/db.fa

Done!

Note

You can install any file of DNA sequences you want this way; just copy
it into /root/blastkit/db/db.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

...and you should see a BLAST page. If you’re searching E. coli, try:

IRHEQEAFVLHGRLQGEERETAIGLTKDKQGDSKVRIDGTDGHKVAELAHLMPMQLITPE
GFTLLNGGPKYRRAFLDWGCFHNEPGFFTAWSNLKRLLKQRNAALRQVTRYEQLRPWDKE
LIPLAEQISTWRAEYSAGIAADMADTCKQFLPEFSLTFSFQRGWEKETEYAEVLERNFER

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 BLASTing your assembled data
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/file.png

thursday.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Thursday, September 19th

Morning: annotation

Lecture: How annotation works.

Prokka.
Producing a protein set for a bunch of contigs.
(=> blast)

Afternoon: automation

Lecture: how computers work.
shell scripting
pipelines
version control
automating some stuff

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Thursday, September 19th
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

novice-shell/06-find.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Finding Things

Objectives

		Use grep to select lines from text files that match simple
patterns.

		Use find to find files whose names match simple patterns.

		Use the output of one command as the command-line parameters to
another command.

		Explain what is meant by “text” and “binary” files, and why many
common tools don’t handle the latter well.

That data I want is somewhere in here...

grep finds and prints lines in files that match a pattern. For our
examples, we will use a file that contains three haikus taken from a
1998 competition in Salon magazine. For this set of examples we’re
going to be working in the writing subdirectory:

$ cd
$ cd writing
$ cat haiku.txt

The Tao that is seen
Is not the true Tao, until
You bring fresh toner.

With searching comes loss
and the presence of absence:
"My Thesis" not found.

Yesterday it worked
Today it is not working
Software is like that.

Forever, or Five Years
^^^^^^^^^^^^^^^^^^^^^^

We haven't linked to the original haikus because they don't appear
to be on *Salon*'s site any longer. As `Jeff Rothenberg
said <http://www.clir.org/pubs/archives/ensuring.pdf>`__, "Digital
information lasts forever—or five years, whichever comes first."

Let’s find lines that contain the word “not”:

$ grep not haiku.txt

Is not the true Tao, until
"My Thesis" not found
Today it is not working

Here, not is the pattern we’re searching for. It’s pretty simple:
every alphanumeric character matches against itself. After the pattern
comes the name or names of the files we’re searching in. The output is
the three lines in the file that contain the letters “not”.

Let’s try a different pattern: “day”.

$ grep day haiku.txt

Yesterday it worked
Today it is not working

This time, the output is lines containing the words “Yesterday” and
“Today”, which both have the letters “day”. If we give grep the
-w flag, it restricts matches to word boundaries, so that only lines
with the word “day” will be printed:

$ grep -w day haiku.txt

In this case, there aren’t any, so grep‘s output is empty.

Another useful option is -n, which numbers the lines that match:

$ grep -n it haiku.txt

5:With searching comes loss
9:Yesterday it worked
10:Today it is not working

Here, we can see that lines 5, 9, and 10 contain the letters “it”.

We can combine flags as we do with other Unix commands. For example,
since -i makes matching case-insensitive and -v inverts the
match, using them both only prints lines that don’t match the pattern
in any mix of upper and lower case:

$ grep -i -v the haiku.txt

You bring fresh toner.

With searching comes loss

Yesterday it worked
Today it is not working
Software is like that.

grep has lots of other options. To find out what they are, we can
type man grep. man is the Unix “manual” command: it prints a
description of a command and its options, and (if you’re lucky) provides
a few examples of how to use it:

$ man grep

GREP(1) GREP(1)

NAME
grep, egrep, fgrep - print lines matching a pattern

SYNOPSIS
grep [OPTIONS] PATTERN [FILE...]
grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION
grep searches the named input FILEs (or standard input if no files are named, or if a single hyphen-
minus (-) is given as file name) for lines containing a match to the given PATTERN. By default, grep
prints the matching lines.
...

OPTIONS
Generic Program Information
--help Print a usage message briefly summarizing these command-line options and the bug-reporting
address, then exit.

-V, --version
Print the version number of grep to the standard output stream. This version number should be
included in all bug reports (see below).

Matcher Selection
-E, --extended-regexp
Interpret PATTERN as an extended regular expression (ERE, see below). (-E is specified by
POSIX.)

-F, --fixed-strings
Interpret PATTERN as a list of fixed strings, separated by newlines, any of which is to be
matched. (-F is specified by POSIX.)
...

Wildcards
^^^^^^^^^

``grep``'s real power doesn't come from its options, though; it
comes from the fact that patterns can include wildcards. (The
technical name for these is `regular
expressions <../../gloss.html#regular-expression>`__, which is what
the "re" in "grep" stands for.) Regular expressions are both complex
and powerful; if you want to do complex searches, please look at the
lesson on `our website <http://software-carpentry.org>`__. As a
taster, we can find lines that have an 'o' in the second position
like this:

::

 $ grep -E '^.o' haiku.txt
 You bring fresh toner.
 Today it is not working
 Software is like that.

We use the ``-E`` flag and put the pattern in quotes to prevent the
shell from trying to interpret it. (If the pattern contained a '*',
for example, the shell would try to expand it before running
``grep``.) The '^' in the pattern anchors the match to the start of
the line. The '.' matches a single character (just like '?' in the
shell), while the 'o' matches an actual 'o'.

While grep finds lines in files, the find command finds files
themselves. Again, it has a lot of options; to show how the simplest
ones work, we’ll use the directory tree shown below.

[image:]Nelle’s writing directory contains one file called haiku.txt and
four subdirectories: thesis (which is sadly empty), data (which
contains two files one.txt and two.txt), a tools directory
that contains the programs format and stats, and an empty
subdirectory called old.

For our first command, let’s run find . -type d. As always, the
. on its own means the current working directory, which is where we
want our search to start; -type d means “things that are
directories”. Sure enough, find‘s output is the names of the five
directories in our little tree (including .):

$ find . -type d

./
./data
./thesis
./tools
./tools/old

If we change -type d to -type f, we get a listing of all the
files instead:

$ find . -type f

./haiku.txt
./tools/stats
./tools/old/oldtool
./tools/format
./thesis/empty-draft.md
./data/one.txt
./data/two.txt

find automatically goes into subdirectories, their subdirectories,
and so on to find everything that matches the pattern we’ve given it. If
we don’t want it to, we can use -maxdepth to restrict the depth of
search:

$ find . -maxdepth 1 -type f

./haiku.txt

The opposite of -maxdepth is -mindepth, which tells find to
only report things that are at or below a certain depth. -mindepth 2
therefore finds all the files that are two or more levels below us:

$ find . -mindepth 2 -type f

./data/one.txt
./data/two.txt
./tools/format
./tools/stats

Now let’s try matching by name:

$ find . -name *.txt

./haiku.txt

We expected it to find all the text files, but it only prints out
./haiku.txt. The problem is that the shell expands wildcard
characters like * before commands run. Since *.txt in the
current directory expands to haiku.txt, the command we actually ran
was:

$ find . -name haiku.txt

find did what we asked; we just asked for the wrong thing.

To get what we want, let’s do what we did with grep: put *.txt
in single quotes to prevent the shell from expanding the * wildcard.
This way, find actually gets the pattern *.txt, not the expanded
filename haiku.txt:

$ find . -name '*.txt'

./data/one.txt
./data/two.txt
./haiku.txt

Listing vs. Finding
^^^^^^^^^^^^^^^^^^^

``ls`` and ``find`` can be made to do similar things given the right
options, but under normal circumstances, ``ls`` lists everything it
can, while ``find`` searches for things with certain properties and
shows them.

As we said earlier, the command line’s power lies in combining tools.
We’ve seen how to do that with pipes; let’s look at another technique.
As we just saw, find . -name '*.txt' gives us a list of all text
files in or below the current directory. How can we combine that with
wc -l to count the lines in all those files?

The simplest way is to put the find command inside $():

$ wc -l $(find . -name '*.txt')

11 ./haiku.txt
300 ./data/two.txt
70 ./data/one.txt
381 total

When the shell executes this command, the first thing it does is run
whatever is inside the $(). It then replaces the $() expression
with that command’s output. Since the output of find is the three
filenames ./data/one.txt, ./data/two.txt, and ./haiku.txt,
the shell constructs the command:

$ wc -l ./data/one.txt ./data/two.txt ./haiku.txt

which is what we wanted. This expansion is exactly what the shell does
when it expands wildcards like * and ?, but lets us use any
command we want as our own “wildcard”.

It’s very common to use find and grep together. The first finds
files that match a pattern; the second looks for lines inside those
files that match another pattern. Here, for example, we can find PDB
files that contain iron atoms by looking for the string “FE” in all the
.pdb files above the current directory:

$ grep FE $(find .. -name '*.pdb')

../data/pdb/heme.pdb:ATOM 25 FE 1 -0.924 0.535 -0.518

Binary Files
^^^^^^^^^^^^

We have focused exclusively on finding things in text files. What if
your data is stored as images, in databases, or in some other
format? One option would be to extend tools like ``grep`` to handle
those formats. This hasn't happened, and probably won't, because
there are too many formats to support.

The second option is to convert the data to text, or extract the
text-ish bits from the data. This is probably the most common
approach, since it only requires people to build one tool per data
format (to extract information). On the one hand, it makes simple
things easy to do. On the negative side, complex things are usually
impossible. For example, it's easy enough to write a program that
will extract X and Y dimensions from image files for ``grep`` to
play with, but how would you write something to find values in a
spreadsheet whose cells contained formulas?

The third choice is to recognize that the shell and text processing
have their limits, and to use a programming language such as Python
instead. When the time comes to do this, don't be too hard on the
shell: many modern programming languages, Python included, have
borrowed a lot of ideas from it, and imitation is also the sincerest
form of praise.

Conclusion

The Unix shell is older than most of the people who use it. It has
survived so long because it is one of the most productive programming
environments ever created—maybe even the most productive. Its syntax
may be cryptic, but people who have mastered it can experiment with
different commands interactively, then use what they have learned to
automate their work. Graphical user interfaces may be better at the
first, but the shell is still unbeaten at the second. And as Alfred
North Whitehead wrote in 1911, “Civilization advances by extending the
number of important operations which we can perform without thinking
about them.”

Key Points

		Use find to find files and directories, and grep to find text
patterns in files.

		$(command) inserts a command’s output in place.

		man command displays the manual page for a given command.

Write a short explanatory comment for the following shell script:

find . -name '*.dat' | wc -l | sort -n

The -v flag to grep inverts pattern matching, so that only lines
which do not match the pattern are printed. Given that, which of the
following commands will find all files in /data whose names end in
ose.dat (e.g., sucrose.dat or maltose.dat), but do not
contain the word temp?

		find /data -name '*.dat' | grep ose | grep -v temp

		find /data -name ose.dat | grep -v temp

		grep -v temp $(find /data -name '*ose.dat')

		None of the above.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Finding Things
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

friday.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Friday, September 20th

Special topics.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Friday, September 20th
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

assembly-lab.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Basic (single-genome) assembly

(You’ll need to have screed and khmer installed; if you ran through
Understanding Read Formats and Quality Controlling Data then you already do. Otherwise, follow the
instructions at the top of that tutorial.)

We’re going to work through an assembly pipeline that uses a Brown Lab
approach called digital normalization [http://ged.msu.edu/papers/2012-diginorm/], which I’ll talk about
tomorrow. For now, just view it as a way to get decent assemblies
faster than you might otherwise ;).

As usual, we’ve both pre-prepared the data for you and given you the
instructions to do it yourself. It should take ~20 minutes to run
through these commands yourself, OR you can just go ahead and
download (section after this one).

Note

Many of the commands below take 5-10 minutes to run, or longer. You
may want to look at using a program called ‘screen’ to run long-running
programs safely – see Using ‘screen’.

Before we do anything with data, make an assembly directory:

cd /mnt
mkdir assembly
cd assembly

Preparing the data yourself

Download the quality-filtered data (see Understanding Read Formats and Quality Controlling Data to make them
yourself):

curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.pe.qc.fq.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.se.qc.fq.gz

Note

If you already have downloaded these files during the mapping tutorial,
you can do:

cp /mnt/ecoli/SRR*.qc.fq.gz .

Now, run it through digital normalization:

/usr/local/share/khmer/scripts/normalize-by-median.py -x 1e9 -N 4 -k 20 -C 20 -p SRR390202.pe.qc.fq.gz --savehash normC20k20.kh

/usr/local/share/khmer/scripts/normalize-by-median.py -x 1e9 -N 4 -k 20 -C 20 SRR390202.se.qc.fq.gz --savehash normC20k20.kh --loadhash normC20k20.kh

The above commands produce ‘.keep’ files; the first command normalizes the
paired-end file (-p) and the second does the single-end file.

Now, remove low-abundance k-mers as likely errors:

/usr/local/share/khmer/scripts/filter-abund.py normC20k20.kh *.keep

This will produce a set of files ‘.abundfilt’ that contain the error-trimmed
data. The paired-end abundfilt file will contain newly orphaned reads now,
ones where left or right reads were removed without their pair being removed;
the following command separates orphans into a .se file, while paired reads
are placed in a .pe file:

/usr/local/share/khmer/scripts/extract-paired-reads.py *.pe.qc.fq.gz.keep.abundfilt

After error trimming, we run another round of digital normalization:

/usr/local/share/khmer/scripts/normalize-by-median.py -k 20 -C 5 -x 2e8 -N 4 -p *.abundfilt.pe --savehash normC5k20.kh

/usr/local/share/khmer/scripts/normalize-by-median.py -k 20 -C 5 -x 2e8 -N 4 *.abundfilt.se *.se.qc.fq.gz.keep.abundfilt --loadhash normC5k20.kh --savehash normC5k20.kh

on the PE and SE files variously. We now end with three files: SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep, SRR390202.pe.qc.fq.gz.keep.abundfilt.se.keep, and SRR390202.se.qc.fq.gz.keep.abundfilt.keep. The first file is still paired end/interleaved (try typing head SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep) and the other two contain only orphaned sequences (left OR right, never both).

Downloading pre-prepared data

Alternatively, you can download the already prepared data sets:

curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.pe.qc.fq.gz.keep.abundfilt.se.keep.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/SRR390202.se.qc.fq.gz.keep.abundfilt.keep.gz
gunzip *.keep.gz

Using Velvet to do assembly

Velvet is a fast and decent assembler. It’s no longer considered one of
the best assemblers, but it’s robust and easy to use so we like using it
in tutorials.

Install the Velvet software:

cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin

Return to the assembly directory:

cd /mnt/assembly

Then run velvet for several different k values:

for k in 21 31 41
do
 velveth ecoli.$k $k -shortPaired -fastq SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep -short SRR390202.pe.qc.fq.gz.keep.abundfilt.se.keep SRR390202.se.qc.fq.gz.keep.abundfilt.keep
 velvetg ecoli.$k -exp_cov auto
done

This produces a bunch of directories, ‘ecoli.21’ and ‘ecoli.31’ and
‘ecoli.41’, each containing a file ‘contigs.fa’. You can look at the
results like so:

head ecoli.21/contigs.fa

To look at some statistics, you’ll need a program. We provide one as
part of khmer, called ‘assemstats3.py’:

python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.??/contigs.fa

If you want to see the N50 for each data set, you can run ‘assemstats2.py’:

python /usr/local/share/khmer/sandbox/assemstats2.py 1000 ecoli.21/contigs.fa

Using SPAdes to do assembly

SPAdes is a nifty assembler that performs very well on single-cell
samples and microbial genomes; see the SPAdes manual [http://bioinf.spbau.ru/spades].

To get spades running, first, install CMake:

apt-get -y install cmake

Then, install spades:

wget http://spades.bioinf.spbau.ru/release2.5.1/SPAdes-2.5.1.tar.gz
tar -xzf SPAdes-2.5.1.tar.gz
cd SPAdes-2.5.1
PREFIX=/usr/local ./spades_compile.sh

Go back to the data directory:

cd /mnt/assembly

And, finally, run it. This will take a few hours...

cp SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep.fq
spades.py --pe1-12 SRR390202.pe.qc.fq.gz.keep.abundfilt.pe.keep.fq -o ecoli.spades

This produces a file ‘ecoli.spades/scaffolds.fasta’ that you can look at:

python /usr/local/share/khmer/sandbox/assemstats2.py 1000 ecoli.spades/scaffolds.fasta

or compare:

python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.??/contigs.fa ecoli.spades/scaffolds.fasta

We can also go run a BLAST server now to check out our assembly – go see
BLASTing your assembled data.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Basic (single-genome) assembly
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

search.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

scavenger-hunt.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Assembly Scavenger Hunt

This exercise is meant to bring together knowledge from the whole week,
and also just be fun. I’ve taken some pain text, embedded it in
DNA with a simple algorithm along with some random sequence,
and fragmented it to produce reads. Your job will be to assemble
the reads and put the results back through the script to retrieve the
original message.

We’ll need a few things:

cd /mnt
mkdir scavenger-hunt
cd scavenger-hunt

curl -O http://athyra.idyll.org/~cswelcher/assembly-scavenger-hunt/reads/reads.svZjxD/scavenger_reads.fa
curl -O http://athyra.idyll.org/~cswelcher/dna2text.py
curl -O http://athyra.idyll.org/~cswelcher/dnatextutils.py

You should have velvet already, but if not:

cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin

cd /mnt/scavenger-hunt

Of course, sequencing chemistry is always improving, so you may want to use:

curl -O http://athyra.idyll.org/~cswelcher/assembly-scavenger-hunt/reads/reads.Q7XSSZ/scavenger_reads.fa

You’ll want to use velvet to assemble scavenger_reads.fa. They’re 36-base singled-ended
reads, and like an actual metagenome, have variable coverage. This means that you might need
to do some parameter exploration to get the contigs you want out of it; I would recommend
looking at the exp_cov parameter of velvetg in particular.

To decode your results, make use of the dna2text.py script. It’s usage is:

python dna2text.py contigs.fa > contigs.text

Which you can then look at with less:

less contigs.text

Further, you might want to make use of an ipython notebook which plots
k-mer abundance distributions, and could help you with parameters:

curl http://2013-caltech-workshop.readthedocs.org/en/latest/_static/caltech-2013-scavenger-hunt.ipynb > /usr/local/notebooks/2013-caltech-scavenger-hunt.ipynb

Which you can then access by going to https://ec2-???????????.compute-1.amazonaws.com.

Happy hunting!

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Assembly Scavenger Hunt
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

wednesday.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Wednesday, September 18th

Morning: Short reads & mapping

Lecture: sequencing basics

Mapping with bwa

One of the most common operations when dealing with NGS data is mapping sequences
to other sequences, and most commonly, mapping reads to a reference. Because
short read alignment is so common, there is a deluge of programs available for doing
it, and it is well-understood problem. Most of the efficient programs work by first
building an index of the sequence that will be mapped to, which allows for
extremely fast lookups, and then running a separate module which uses that index
to align short sequences against the reference. Alignment is used for visualization,
coverage estimation, SNP calling, expression analysis, and a slew of other problems.
For a high-level overview, try this NCBI review [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836519/].

Getting the Dependencies

bwa is one of the many available read mappers. bwa is a good “reference” version
of a common alignment algorithm based on the Burrows-Wheeler transform; those
of you looking to dive into a relatively thick paper on it can read about it
here [http://bioinformatics.oxfordjournals.org/content/25/14/1754.short].

Firstly, let’s download bwa:

cd /root
curl -L "http://downloads.sourceforge.net/project/bio-bwa/bwa-0.7.5a.tar.bz2?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbio-bwa%2Ffiles%2F&ts=1379347638&use_mirror=softlayer-dal" > bwa-0.7.5a.tar.bz2

And then decompress it:

tar xjf bwa-0.7.5a.tar.bz2

Now, change into the directory with the source code and compile it:

cd bwa-0.7.5a/
make

Finally, move the compiled executable to a location where the operating system
can find it:

cp bwa /usr/local/bin

So what did we actually just do? bwa is offered as an open-source program – that
is, the actual code which defines its functionality is freely available. However,
bwa is written in C, which, unlike Python, is not “interpreted.” Instead, the
source code needs to be parsed and converted into machine language which can be
run on the processor. This allows compiled programs to run much more efficiently
than their interpreted counterparts, at the cost of needing to be recompiled for
different systems. Although pre-compiled executables can be found for many programs,
Unix programs are often distributed as source. ‘make’ is a program for tracking
dependencies amongst files, and is used to manage the compilation of larger
projects with many files.

Now, we need to grab a few more dependencies. We’ll download screed, which is
a simple python module for parsing fasta files developed by our lab at MSU:

pip install screed

And then khmer, which is a Python interface to a really fast (and awesome) piece
of software for counting k-mers (more on that later):

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout 2013-caltech-cemi
make

Now that we’ve downloaded and built khmer, we’ll add it to the system’s python
PATH so that our scripts now where to find it:

echo 'export PYTHONPATH=/usr/local/share/khmer/python' >> ~/.bashrc
source ~/.bashrc

Get Some Test Data

We’ve got the programs we need, so now let’s get some data to play with. Everybody
loves ecoli, so we’ll grab a reference genome of the k-12 strain. The program
we’ll use is called curl, which grabs data from a URL and spits it out to
the terminal; using the > sign, we can direct that output into a file, like so:

curl http://www.genome.wisc.edu/pub/sequence/U00096.2.fas > ecoli_k12.fa

The > sign is a general UNIX construct for redirecting a ‘stream’ to a file. You’ll
see it relatively often.

We’ve got a reference genome, so now let’s get some reads to align to it:

curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli_ref-5m.fastq.gz

Just to keep you on your toes, we’ve switched around the format of curl this time.
Instead of redirecting the output to a file, the -O flag will simply save the file
to disk in the current directory using the same name as on the remote server. The
only real difference in behavior is that in the first form, you can choose the
name of the file.

Now that we’ve got the reads, let’s split them. These reads are paired – that is,
each has a “left” and “right” component which came from the same molecule of DNA,
and fall within some range of distances from each other. This allows for assemblers
and mappers to reap some of the benefits of longer reads, without actually requiring
the sequencing hardware to produce longer reads. We’ll go into further detail
during the assembly portion.

These paired reads happen to be “interleaved,” meaning that the left and right
reads are in the same file, in alternating order. Many programs require them
to be in separate files, so we have a simply script which splits them:

python /usr/local/share/khmer/scripts/split-paired-reads.py ecoli_ref-5m.fastq.gz

To speed up the demonstration, we will just map a subset of the reads rather than
the entire file, which is somewhat large (though small compared to many datasets).
The head command outputs the first n lines of a file, by default 4:

head -n 100000 ecoli_ref-5m.fastq.gz.1 > left.fa
head -n 100000 ecoli_ref-5m.fastq.gz.2 > right.fa

We’ve got our reads and a reference, so we’re ready to get started. First, we
build an index of the reference genome using bwa:

bwa index -a bwtsw ecoli_k12.fa

The -a flag tells bwa which indexing algorithm to use. The program will automatically
output some files with set extensions, which the main alignment program knows the
format of. Thus, we run the alignment like so:

bwa mem ecoli_k12.fa left.fa right.fa > aln.x.ecoli_k12.sam

which aligns the left and right reads against the reference, and outputs them
to the given SAM file. SAM is a common format for alignments which is understood
by many programs, along with BAM. It’s often useful to have both, so we’ll use
a utility called samtools to produce a sorted BAM file as well:

samtools view -uS aln.x.ecoli_k12.sam > aln.x.ecoli_k12.bam
samtools sort aln.x.ecoli_k12.bam aln.x.ecoli_k12.bam.sorted
samtools index aln.x.ecoli_k12.bam.sorted.bam

And there you have it! For additional resources, check out:

		the bwa manual [http://bio-bwa.sourceforge.net/bwa.shtml]

		info on samtools [http://samtools.sourceforge.net/]

		the SAM format spec [http://samtools.sourceforge.net/SAM1.pdf]

@cswelcher TODO:

http://www.ncbi.nlm.nih.gov/pubmed/22522955
http://www.ebi.ac.uk/ena/data/view/SRA048664 (see files athyra:~t/cit/)

Building a SAM file.
Calling SNPs
Tablet.

http://ged.msu.edu/angus/tutorials-2013/bwa-tutorial.html

Afternoon: QC; Assembly

Assembly exercise?

Looking at mapping mismatches:
http://ged.msu.edu/angus/tutorials-2013/plot-mapping-mismatches.html

Quality trimming
QC and FASTQ:
http://ged.msu.edu/angus/tutorials-2013/short-read-quality-evaluation.html

Assembling E. coli
http://ged.msu.edu/angus/tutorials-2013/assembling-ecoli-with-velvet.html
Velvet
SPADES
idba

Evaluating assemblies.
Comparing assemblies. (?)

Q: Do we want to do the assembly & mapping exercise?)

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Wednesday, September 18th
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

amazon/log-in-with-ssh-win.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Logging into your new instance “in the cloud” (Windows version)

Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Generate a ppk file from your pem file

(You only need to do this once for each key!)

Open puttygen; select “Load”.

[image: ../_images/win-puttygen.png]
Find and load your ‘.pem’ file; it’s probably in your Downloads
folder. Note, you have to select ‘All files’ on the bottom.

[image: ../_images/win-puttygen-2.png]
Load it.

[image: ../_images/win-puttygen-3.png]
Now, “save private key”. Put it somewhere easy to find.

[image: ../_images/win-puttygen-4.png]
Now that you’ve generated your PPK file from your PEM file, you can log
in. To do that...

Logging into your EC2 instance with Putty

Open up putty, and enter your hostname into the Host Name box.

[image: ../_images/win-putty-1.png]
Now, go find the ‘SSH’ section and enter your ppk file (generated above
by puttygen). Then select ‘Open’.

[image: ../_images/win-putty-2.png]
Log in as “root”.

[image: ../_images/win-putty-3.png]
Declare victory!

[image: ../_images/win-putty-4.png]

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Logging into your new instance “in the cloud” (Windows version)
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

amazon/log-in-with-ssh-win-argonne.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Logging into your new instance “in the cloud” (Windows version)

Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Download the ppk file

Download the private key from PLACEHOLDER. This will let you into your instance.

[image: ../_images/win-putty-1.png]
Open connection -> SSH -> auth on the left hand panel

[image: ../_images/win-putty-2.png]
Find and load the class ‘.ppk’ file; it’s probably in your Downloads
folder. Note, you have to select ‘All files’ on the bottom.

[image: ../_images/win-putty-3.png]
Now type the four-component number (something like 54.164.141.36)
in the Host Name field name

Now that you’ve told Putty about the PPK file from your PEM file, you can log
in. To do that...

Logging into your EC2 instance with Putty

Open up putty, and enter your hostname into the Host Name box.

[image: ../_images/win-putty-4.png]
Log in as “ubuntu”.

[image: ../_images/win-putty-3.png]
Declare victory!

[image: ../_images/win-putty-4.png]

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Logging into your new instance “in the cloud” (Windows version)
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

some-exercises.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Some exercises to try

		Finish or re-run one of the tutorials that you’re particularly interested
in.

		Download and assemble some reads from the Short Read Archive (SRA)
or elsewhere.

Remember that the ENA at EBI [http://www.ebi.ac.uk/ena/] offers
FASTQ downloads of SRA sequence.

(see these tutorials: Understanding Read Formats and Quality Controlling Data and assembly-lab)

		Browse the NCBI Bacterial genomes site [http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/], download a proteome
of interest (you’ll want the ‘.faa’ files), and run the various BLASTs
on ‘em (e.g. find reciprocal best hits).

See the instructions here: tuesday.

		Map raw reads for the E. coli 0104 genome back to your assembly –
e.g. take the assembly at http://athyra.idyll.org/~t/ecoli-v41.fa
and map the QC reads to it (see Mapping with bwa).

Bonus: load the resulting read mapping into Tablet.

Bonus x 2: use the Prokka annotation .gff file to define features
in Tablet. (If you didn’t get all the way through the Prokka run,
you can download a zip file of the results here:
http://athyra.idyll.org/~t/ecoli0104-prokka.zip)

		Assemble the provided ecoli reads without digital normalization.

		Install BLAST and the ngs-scripts, and then try comparing an assembly
with a genome by using the following commands:

blastall -i assembly.fa -d genome.fa -p blastn -e 1e-20 -o assembly.x.genome.blastn
blastall -d assembly.fa -i genome.fa -p blastn -e 1e-20 -o genome.x.assembly.blastn

python /usr/local/share/ngs-scripts/blast/calc-blast-cover.py genome.fa assembly.x.genome.blastn 300 assembly.fa
python /usr/local/share/ngs-scripts/blast/calc-blast-cover.py assembly.fa genome.x.assembly.blastn 300 genome.fa

		Try taking one of the assemblies
(e.g. http://athyra.idyll.org/~t/ecoli-v41.fa) and mapping the QC
reads used to assemble it back to it, to assess assembly completeness.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Some exercises to try
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

amazon/installing-dropbox.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Installing Dropbox on your EC2 machine

IMPORTANT: Dropbox will sync everything you have to your EC2 machine, so
if you are already using Dropbox for a lot of stuff, you might want to
create a separate Dropbox account just for the course.

Start at the login prompt on your EC2 machine:

cd /root

Then, grab the latest dropbox installation package for Linux:

wget -O dropbox.tar.gz "http://www.dropbox.com/download/?plat=lnx.x86_64"

Unpack it:

tar -xvzf dropbox.tar.gz

Make the Dropbox directory on /mnt and link it in:

mkdir /mnt/Dropbox
ln -fs /mnt/Dropbox /root

and then run it:

~/.dropbox-dist/dropboxd &

When you get a message saying “this client is not linked to any account”,
copy/paste the URL into browser and go log in. Voila!

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Installing Dropbox on your EC2 machine
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

prokka-annotation.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Annotating a bacterial genome with Prokka

We’re going to use the Prokka software [http://www.vicbioinformatics.com/software.prokka.shtml] to
annotate our newly assembled bacterial genome (from the E. coli 0104 reads).
(You can think of it as an alternative to RAST [http://rast.nmpdr.org/].)

We have to download and install a lot of stuff, though – estimated ~15
-20 minutes.

First, we need to install BioPerl and NCBI BLAST+; for this we’ll use
the Debian Linux package installer, ‘apt-get’:

apt-get update
apt-get -y install bioperl ncbi-blast+

Now download and unpack Prokka:

cd /mnt
curl -O http://www.vicbioinformatics.com/prokka-1.7.tar.gz
tar xzf prokka-1.7.tar.gz

Prokka depends on a lot of other software, too; so we’ll need to install
all of that.

Install HMMER [http://hmmer.janelia.org/]:

curl -O ftp://selab.janelia.org/pub/software/hmmer3/3.1b1/hmmer-3.1b1.tar.gz
tar xzf hmmer-3.1b1.tar.gz
cd hmmer-3.1b1/
./configure --prefix=/usr && make && make install

Install Aragorn [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373265/]:

cd /mnt
curl -O http://mbio-serv2.mbioekol.lu.se/ARAGORN/Downloads/aragorn1.2.36.tgz
tar -xvzf aragorn1.2.36.tgz
cd aragorn1.2.36/
gcc -O3 -ffast-math -finline-functions -o aragorn aragorn1.2.36.c
cp aragorn /usr/local/bin

Install Prodigal [http://prodigal.ornl.gov/]:

cd /mnt
curl -O http://prodigal.googlecode.com/files/prodigal.v2_60.tar.gz
tar xzf prodigal.v2_60.tar.gz
cd prodigal.v2_60/
make
cp prodigal /usr/local/bin

Install tbl2asn [http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/]:

cd /mnt
curl -O ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/linux64.tbl2asn.gz
gunzip linux64.tbl2asn.gz
mv linux64.tbl2asn tbl2asn
chmod +x tbl2asn
cp tbl2asn /usr/local/bin

Install GNU Parallel [http://www.biostars.org/p/63816/]:

cd /mnt
curl -O http://ftp.gnu.org/gnu/parallel/parallel-20130822.tar.bz2
tar xjvf parallel-20130822.tar.bz2
cd parallel-20130822/
ls
./configure && make && make install

Install Infernal [http://infernal.janelia.org/]:

cd /mnt
curl -O http://selab.janelia.org/software/infernal/infernal-1.1rc4.tar.gz
tar xzf infernal-1.1rc4.tar.gz
cd infernal-1.1rc4/
ls
./configure && make && make install

Download an E. coli assembly (this is the one produced by Velvet for k=41 in Basic (single-genome) assembly):

cd /mnt
mkdir annot
cd annot
curl -O http://athyra.idyll.org/~t/ecoli-v41.fa

And ... finally, run Prokka on the downloaded file!

../prokka-1.7/bin/prokka ecoli-v41.fa --outdir ecoli0104 --prefix ecoli0104 --force

This will produce a bunch of files in a directory named ‘ecoli0104’.
The ecoli0104.faa file will contain the predicted & annotated
proteins, while the ecoli0104.fna file contains the original
contigs. This directory contains all of the files necessary to submit
the genome to NCBI, too.

To look at the .faa, try:

head ecoli0104/ecoli0104.faa

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Annotating a bacterial genome with Prokka
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/ec2-instance-running.png
EC2 Dashboard

Launch Instance | Actions v

c & 0

Events «

Tgs Viewing: [Allinstances

+) (Alinstance Types

] (Search

D}

1€ ¢ 1o2or2msunces > 3]

INSTANGES O Name ™ instance

RootDevice | Type

Status Checks | Alarm Status Monitoring

Security Groups | Key Pair Name Vi

Instances O Elieh | i@ rd6dtiebd

ami-999d4910

ebs

milarge

Loading... basic

default el pe

Spot Requests
Reserved Instances

oo

ami-999d4910

ebs

— e 5

default Adam pe

IMAGES

AMis
Bunde Tasks

ELASTIC BLOCK STORE
Volumes
Snapshots.

NETWORK & SECURITY
Seaurity Groups
Elastic IPs
Placement Groups
Load Balancers

Key Pairs
Network Interfaces

@ EC2 Instance: Adam

i-f6897293) @

AmMr:

Starcluster-base-ubuntu-11.10-x86_64 (ami-99949f0)

Zone:

us-east-1c

Alarm Status:

Security Groups:

default. view rules

_images/tablet_open.png
) @] | Memory usage: 51.75 MB (3)

| Home | color Schemes Advanced (%)
Read Packing |[0 zoom: 4(Pageleft JpPageRight 4 Jump to Base
J v EY
\ ry £ = Tag Variants || variants & PrevFeature = Next Feature
open import Import
Mssembly] Features Enmymes | @ Read Colors Prev View Next View
Data Visual Adjust Navigate

Open Assembly

GO Otoralreads b Taplet 113.07.31-| Select assembly files: &) send feedback & Follow us

Getting started | | Erimary assembly file or URL:

Jimport an assen] e/chris/w/2013-caltech-workshop/aln.x.ecol_NC_018658.bam.sorted.bam]

Quickly open a prey| | Beferencerconsensus file or URL

/home/chris/w/201 3-caltech-workshop/NC_018658.fna |52]

[l aln.x.ecoli k12

Current status: Assembly - BAM | Reference - FASTA

Notes:

~Tablet currently supports ACE, AFG, MAQ (text), SOAP, SAM, and (indexed) BAM assemblies.
- Reference files (if needed for MAQ, SOAP, SAM and BAM) can be in FASTA or FASTQ format.

- Unsure how to get started? Click here to open an example assembly.

@) (Goree) (Cmen]

Filter by: (Name - ing Tablet -
Hutton
& Please click here for information on how to cite Tablet if you use it in your work Insttute

Tablat Tip: Position data is often supplemented with U (unpadded position) and CV (read coverage at that position) values 0

_images/ec2-details.png
Create a New Instance Cancel (X1

starcluster-base-ubuntu-11.10-x86_64 (ami-999d450)
StarCluster Base Ubuntu 11.10 xB6_64 (Us-east-1)

Adam
No
stop
Launch into a VPC: No

Security Details
Key Pair: Adam

Kernel ID: Default Ramdisk ID: Default
User Data: 1AM Role: @
Network Interfaces:

. Gosock i dotmts] [cownen |

amazon/index.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Getting started with Amazon EC2

		Start up an EC2 instance
		Log in

		Select your zone

		The launch wizard

		“Create a new instance” page 1

		“Create a new instance” page 2

		Wait for your instance to be running

		Adjusting security rules

		Logging into your new instance “in the cloud” (Windows version)
		Generate a ppk file from your pem file

		Logging into your EC2 instance with Putty

		Installing Dropbox on your EC2 machine

A final checklist:

		EC2 instance is running;

		used AMI ami-c17ec8a8;

		NOT micro instance (m1.large, or bigger);

		SSH, HTTP, HTTPS are enabled on the security group;

IPython Notebook access

You can access IPython Notebook on your computer by going to
https:// + YOUR MACHINE NAME, and then entering ‘beacon’ as the password.

Amazon Web Services reference material

Instance types [http://aws.amazon.com/ec2/instance-types/]
Instance costs [http://aws.amazon.com/ec2/pricing/]

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Getting started with Amazon EC2
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/win-putty-2.png
R PuTTY Configuration

e

‘Optons contrling SSH authentcation

[T Bypass authentication entirely (SSH-2 only)
Display pre-authentication barner (SSH-2 only)
Authentication methods

tempt authentication using Pageant

[T Attempt TIS or CryptoCard auth (SSH-1)

tempt "keyboard interactive” auth (S5H-2)
Authentication parameters.

] Alow agent forwarting

[C] Alow attempted changes of usemame in SSH-2
Private

_static/up-pressed.png

_images/ec2-wizard.png
Create a New Instance

Select n option below:

O classic Wizard

Launch an On-Demand or Spot Instance
using the classic wizard with fine-grained
control over how it is aunched.

© Quick Launch Wizard

Launch an On-Demand Instance using an
editable, default configuration so that
You can get started In the cloud as.
auickly s possible,

© AWS Marketplace

AWS Marketplace Is an online store
where you can find and buy software that
Funs on AWS. Launch with 1-Click and
pay by the hour.

Submit Feedback ~ Getting Started Guide

T

Choose a Key P:

R T ———
' Select Extsting "EFESENEw G None

Clame: pdam

Please ROt BT you need to download the key pair before you can cantinue.

D

Choose a Launch G

‘Search through public and AWS Marketplag AMIs or choose from your own custom AM.

The Amazon Linux AN s 2n EBS-backed, PV-GRUB Image. It includes 64 bit © 32 bit O
Linux 3.4, AWS tools, and repository access to multiple versions of Free tier eigible
HySQL, PostgreSQL, Python, Ruby, and Tomeat.

Red Hat Enterprise Linux 6.4

Red Hat Enterprise Linux version 6.4, EBS-boot. 64bit® 32bitO

‘SUSE Linux Enterprise Server 11 . .
'SUSE Linux Enterprise Server 11 Service Pack 2 basic install, EBS boot 64 bit © 32 bit O
with Amazon EC2 AMI Tools preinstalied; Apache 2.2, MySQL 5.0, PHP 5.3, and Ruby 1.8.7
avallable

‘Ubuntu Server 12.04.2 LTS

Ubuntu Server 12.04.2 LTS with support avallable from Canonical
(hitp:/www.ubuntu.com/cloud/services).

]
c]

64bit® 32bitO
Free tier eigible

<>

Note: You can customize your settings In the next step.

_images/win-puttygen-2.png
B Load private key: LX)

.+ Computer » Homeoon psf @) » winshare < [[scarch winshare »
Organize v New folder 0 @ |
El RecentPlaces ~ Name . Date modified Type
D ab AN21043PM PEMFile

amazon/security-rules.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Adjusting security rules

Before continuing, you’ll need to adjust your security rules so that you
can access your new instance properly. To do that, go over to Security
Groups on the dashboard, select ‘default’, and then adjust your security
rules to enable ports 22, 80, and 443 (SSH, HTTP, and HTTPS).

[image: ../_images/ec2-security.png]
Make sure you “Apply rule changes” afterwards.

Then, go to Logging into your new instance “in the cloud” (Windows version) or log-in-with-ssh-mac

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Adjusting security rules
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/victory-win.png
Are you sure you want to continue connecting (yes/no)? yes
arning: Permanently added +54.90.169 106" (ECHSA) ©o the 1ist of known hosts.
lelcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-36-generic x86_64)

https://help.ubuntu. con/
System information as of Sat Oct 4 12:02:56 UTC 2014
system Toad: 0.0 Processes: 100
Usage of /: 9.8% of 7.74G8 Users logged in: 0
Memory usage: 2% 1P address for eth0: 10.99.166.83
Swap usage: 0%

Graph this data and manage this system at:
https://1andscape. canonical. con/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://wa.ubuntu. con/business/servi ces/cloud

0 packages can be updated.
0 updates are security updates.

lLast Togin: sat Oct 4 12:03:01 2014 from 12.189.70.151
jubuntu@ip-10-99-166-83:~%

_images/nano-screenshot.png
GNU nano 2.0.6 File: draft.txt

It's not "publish or perish" any more,
it's "share and thrive".

Get Help [V WriteOut ! Read File Prev Page J Cut Text (6 Cur Pos
J Exit Justify Where Is Next Page UnCut Text To Spell

_images/win-putty-1.png
B8 PUTTY Configuration

-——

& Session 2

£SSH

- Ath

X1

“

Basic optons foryour PuTTY session

‘Specty the destnation you want to connect to

_images/win-puttygen-4.png
18 PuTTY Key Generator . |

File Key Conversions Help
Key
Pubic key for pasting nto OpenSSH authorzed_keys fie:
shsa -
PAABINGAC yC2EAAMAD KA AAABCCOLGZICH 24N DLsSSTR ! |
WaH72t+3anZc+/0p YXaUBadHy314gEQpeKgORINbIY hnihchOj
6120 7rlomAIGkM3ZGLySSgadp
“AQRIYW 73k TLWt0n3cwiuyPoA2pygl6y47VBvanimVUEF AXMErSOngke 1h/i35.CDZ2 ~
Key fingerpint sshisa 2048 c7cd 91id o7 d3cblecT o722 W 87,0841
Key comment: imported-opensshkey
Key passphrase:
Confim passphrase:
Adtons

Generate a publc/private key pair

Load an exising pivate key fie.
Save the generated key

Parameters

Type of key to generste:
SSH1 (RSA)

Numberof bits in 2 generated key:

_images/ec2-dashboard-zone.png
Services ~ nia) Help
EC2 Dashboard Launch Instance | Actions v ¢ ® 0
Events «

Tags Viewing: ((All Instances 4)(Allinstance Types 4)(¢ € 1to1of1Instances

_images/win-putty-3.png
Cogin as: zoocl

amazon/start-up-an-ec2-instance.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Start up an EC2 instance

Log in

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Click on EC2 (upper left).

Select your zone

Many of the resources that we use are hosted by Amazon on the East coast.
Make sure that your dashboard has ‘N. Virginia’ on the upper right:

[image: ../_images/ec2-dashboard-zone.png]
If it doesn’t say N. Virginia, click on it and select “US East (N. Virginia)”.

The launch wizard

Select “Launch Instance” (midway down the page), and select “Quick
Launch Wizard”.

[image: ../_images/ec2-wizard.png]
On this page,

		Name your new computer something (here, “Adam”; name it after yourself instead).

		Create a new key pair (here, “Adam”; name it after yourself instead) and Download it.

		Select “More Amazon machine images.”

		Click on “Continue.” This will be greyed out until you download the
key pair (button, upper right).

Note: You only need to create a new key pair the first time you’re
doing this – you can select the one you created the first time, if you
still have a copy of the key file you downloaded stored somewhere.

“Create a new instance” page 1

Enter ‘ami-c17ec8a8’ into the search box and click “search”. Select
it, and hit Continue.

(If it doesn’t show up, exit the wizard and make sure you’re in US East
zone – see upper right of EC2 console.)

“Create a new instance” page 2

On this page, “Edit details” until it looks like the below image –

[image: ../_images/ec2-details.png]

		Make sure your “Type” is m1.large.

		Make sure your “Availability zone” is something specific, like us-east-1c.

		Make sure your “Security group” is set to default.

Then, click “Launch”.

Wait for your instance to be running

Go to the ‘instances’ list and make sure your particular instance is
running.

[image: ../_images/ec2-instance-running.png]
You’ll need the hostname of your new computer, on the bottom (ec2-...) –
we suggest selecting this and copying it somewhere.

Now go to Adjusting security rules.

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Start up an EC2 instance
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

amazon/using-screen.html

 Navigation

 		
 index

 		2014 Argonne Soils Workshop automation workshop »

Using ‘screen’

		Author:		Rosangela Canino-Koning

		Date:		June 9, 2011

		Last Updated:		July 24, 2013

Persistent Sessions

Screen is a window manager for terminal sessions. Screen allows you to
run a terminal session, and then disconnect from the computer, and be
able to return to the session at a later date.

To start screen, you run the screen command with a few options:

screen -S <sessionname>

Where sessionname is any meaningful or descriptive title for your screen
session. This creates an independent terminal session, and connects you to it.

Most commands within screen are composed of a prefix key-stroke,
followed by a command character. By default, the prefix is Ctrl-A. In
this tutorial Ctrl-A will represented by “C-a”.

Let’s try a few screen commands.

To disconnect from the session (while leaving it running!), type:

C-a d

This session will remain active until you choose to end it, or you
reboot the computer. You can at this point safely disconnect from SSH,
and the screen session will continue to run.

To reconnect to the session, make sure you’re logged into the UNIX machine,
and type:

screen -r

To illustrate managing multiple screen session, disconnect from the current
session, and create a new session with a second name.:

C-a d
screen -S <secondsessionname>

Disconnect from the second session, and then list the available sessions:

C-a d
screen -list

Note, typing screen -r with multiple active screen sessions will display
the same information.

To reconnect to the first session, include its name after the -r.:

screen -r <sessionname>

 © Copyright 2013-2014, C. Titus Brown, Chris Welcher, and Will Trimble.
 Created using Sphinx 1.2.2.

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Using ‘screen’
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/win-puttygen.png

_images/ec2-security.png
n- N

EC2 Dashboard Create Security Group | Delete (S
Events q

Tags € < tetoimems > O
=) INSTANCES Group ID Name VPC ID Description

Instances & | sg-d14489ba () default default group

Spot Requests

Reserved Instances

(=) IMAGES
AMIs
Bundle Tasks
=) ELASTIC BLOCK STORE Details || Inbound |
Volumes
e I CT AT RO . <rvice) —

59-d14489ba (default)
Port range:
80 or 49152-65535)
Source: o0
e T T 0- 65535 sg-d14489ba (default)
Pacoment o 1234567890/ default) 22 (SSH) 0.0.0.0/0 Delete
ment Sroups [AddRue| | 80 (HTTP) 0.0.0.0/0 Delete
Load Balancers 443 (HTTPS) 0.0.0.0/0 Delete
Key Pairs 0.0.0.0/0
Network Interfaces [Apply Rule Changes]
Port (Service)
0 - 65535 59-d14489ba (default)

_images/win-putty-4.png
Custom-Compiled Atlas, Numpy, Scipy, etc
Open Grid Scheduler (0GS) queuing system

Condor workload management system

OpenMPI compiled with Open Grid Scheduler support
IPython 0.12 with parallel support

and more! (use 'apkg -1' to show all installed packages)

[open Gria scheduler/Condor cheat sheet:

gstat/condor_g - show status of batch jobs
qhost/condor_status- show status of hosts, queues, and jabs
qsub/condor_submit - submit batch jobs (e.g. gsub -cwd ./jobscript.sh)
qdel/condor_rm - delete batch jobs (e.g. qdel 7)

qeonf - configure Open Grid Scheduler system

Current system stats:

System load: 0.0 Processes: &
Usage of /: 32.4% of 9.84G3 Users logged in: o

Memory usage: 0% 1P address for eth0: 10.196.153.188
Swap usage: 0%

ootesp-10-29