
Pipelines!

CTB
6/15/13

A pipeline view of the world

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

Each computational step is one or
more commands

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

Trimmomatic

fastx

Velvet

The breakdown into steps is
dictated by input/output…

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

In: reads; out: reads

In: reads; out: reads

In: reads; out: contigs

The breakdown into steps is driven
by input/output and “concept”

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

In: reads; out: reads.
Trimmomatic OR scythe OR …

In: reads; out: reads.
FASTX OR sickle OR ConDeTri OR …

In: reads; out: contigs
Velvet OR SGA OR …

Generally, I don’t include
diagnostic steps as part of the main “flow”.

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

Evaluate with
FastQC

Evaluate with
FastQC

Evaluate with
mapping, BLAST,

etc.

Generally, I don’t include
diagnostic steps as part of the main “flow”.

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

Evaluate with
FastQC

Evaluate with
FastQC

Evaluate with
mapping, BLAST,

etc.

…but there isn’t exactly a
standard :)

Remove adapters

Discard/trim low
quality

Assemble

Sequence E. coli
2x110

Genome!

Evaluate with
FastQC

Evaluate with
FastQC

Index contigs

Map reads

Calculate mismatch
pro lfi e

What is a pipeline, anyway?

• Conceptually: series of data in/data out steps.

• Practically: series of commands that load data,
process it, and save it back to disk.

– This is generally true in bioinformatics
– You can also have programs that do multiple steps,

which involves less disk “traffic”

• Actually: a bunch of UNIX commands.

“Shell scripting”

• The shell (bash, csh, etc) is specialized for
exactly this: running commands.

• Shell “scripting” is putting together a series of
commands – “scripting actions” to be run.

• Scripting vs programming – fuzzy line.
– Scripting generally involves less complex

organization.
– Scripting typically done w/in single file

Writing a shell script:
It’s just a series of shell commands, in a file.

trim adapters

… Trimmomatic …

shuffle reads together

Interleave.py …

Trim bad reads

fastx_trimmer

Run velvet

velveth...

velvetg…

trim-and-assemble.sh

Back to pipelines

• Automated pipelines are good things.
– Encode each and every step in a script;
– Provide all the details, incl parameters;

• Explicit: each command is present.
• Reusable: can easily tweak a parameter, re-run &

re-evaluate.
• Communicable: you can give to lab mate, PI, etc.
• Minimizes confusion as to what you actually did :)
• Automated: start & walk away from long-running pipelines.

Why pipelines?

• Automation:
– Convenience
– Reuse
– Reproducibility

Pipelines encode knowledge in an
explicit & executable computational

representation.

Reproducibility

• Most groups can’t reproduce their
own results, 6 months later.

• Other groups don’t even have a
chance.

• Limits:
– Reusability
– Bug finding/tracking/fixing

Both convenience and correctness.

Some nonobvious
corollaries

• Each processing step from the raw data
onwards is interesting; so you need to
provide close-to-raw data.

• Making the figures is part of the pipeline;
but Excel cannot be automated.

• Keeping track of what exact version of the
pipeline script you used to generate the
results now becomes a problem…

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

http://www.phdcomics.com/comics/archive.php?comicid=1531

This is what version control is about.

• Version control gives you can explicit
way to track, mark, and annotate
changes to collections of files.

• (Git is one such system.)
• In combination with Web sites like

github.com, you can:
– View changes and files online
– Download specific marked versions of

files

An actual pipeline

• The results in our digital normalization paper are about
80% automated.

– Raw data
– Single command to go from raw data to fully processed data.
– Single IPython Notebook to go from raw data to figures.
– (Super special) single command to go from figures + paper

source to submission PDF.
– Figures & text are tied to a specific version of our pipeline

=> 100% reproducible.

IPython Notebook

This morning

• Let’s automate read trimming,
mapping, & mismatch calculation!

– Write script; run on subset of reads
– Write notebook => figures
– Put in version control, post to github.

• A quick tour of github
– Forking, cloning, editing, pushing back

• Encoding assembly

Tips & tricks

• Develop a systematic naming scheme for files =>
easier to investigate results.

• Work with a small data set first & develop the
pipeline; then, once it’s working, apply to full data
set.

• Put in friendly “echo” commands.

• Advanced: use loops and wildcards to write
generic processing steps.

