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Shotgun	
  metagenomics	
  

�  Collect	
  samples;	
  

�  Extract	
  DNA;	
  

�  Feed	
  into	
  sequencer;	
  

�  Computa<onally	
  analyze.	
  

Wikipedia: Environmental shotgun 
sequencing.png 



Annotating individual reads 

� Works really well when you have EITHER 
�  (a) evolutionarily close references 
�  (b) rather long sequences 

(This is obvious, right?) 



Annotating individual reads #2 

� We have found that this does not work well 
with Illumina samples from unexplored 
environments (e.g. soil). 

� Sensitivity is fine (correct match is usually 
there) 

� Specificity is bad (correct match may be 
drowned out by incorrect matches) 



Recommendation: 

For reads < 200-300 bp, 

� Annotate individual reads for human-
associated samples, or exploration of well-
studied systems. 

� For everything else, look to assembly. 



So, why assemble? 

�  Increase your ability to assign homology/
orthology correctly!! 

Essentially all functional annotation systems 
depend on sequence similarity to assign 
homology.  This is why you want to assemble 
your data. 



Why else would you want to 
assemble? 

� Assemble new “reference”. 

� Look for large-scale variation from 
reference – pathogenicity islands, etc. 

� Discriminate between different members of 
gene families. 

� Discover operon assemblages & annotate on 
co-incidence of genes. 

� Reduce size of data!! 

 



Why don’t you want to assemble?? 

� Abundance threshold – low-coverage filter. 

� Strain variation 

� Chimerism 



A story: looking at land 
management with 454 shotgun 

� Tracy Teal, Vicente Gomez-Alvarado, & Tom 
Schmidt 

� Ask detailed questions of @tracykteal on 
Twitter, please :) 



How do microbial communities change with 
land management? 

www.glbrc.org)
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Kellogg Biological Station LTER 

eralizable N were 3 to 10 times lower in the
poplar sites than in any of the high-N2O
sites (Table 1).

The difference in N2O production be-
tween cropped and successional systems pro-
vides an estimate of background fluxes in
agriculture now missing from current glob-
al flux estimates. The current Intergovern-
mental Panel on Climate Change (IPCC)
methodology for assessing direct N2O
emissions from agricultural fields (17 )
multiplies total N inputs (from synthetic
fertilizer, manure, legumes, and crop resi-
due) by an N2O emission factor calculated
as the difference between N2O flux from
fertilized versus unfertilized experimental
plots plus a background flux equivalent to
that of the unfertilized plot. The difference
between the estimated background flux and
the actual preagricultural flux is missing
(18). In our site, the N2O flux difference
between the unfertilized early successional
site and the late successional forest (15)
would add 40% to estimates of background
N2O emissions, or about 20% to estimates
of annual crop emissions based on IPCC
emission factors alone (19). The magnitude
of this increase further underscores the im-
portance of contemporary agriculture, as
suggested in recent revisions of the global
N2O budget (18). A 20% increase in the
total flux attributed to cultivated soils in the
most recent IPCC assessment (1) adds 0.7
Tg N year!1 to the global N2O flux.

We used current IPCC factors (20) to
estimate the GWP for each of these systems
based on contributions of individual gases.
GWP provides a measure of the cumulative
radiative forcing of various greenhouse gases
relative to some reference gas, usually CO2,
over a specific time horizon, here 20 years
(21). We calculated net CO2 flux on the basis
of changes in soil organic matter and the CO2

cost of agronomic inputs—N fertilizer, lime,

and fuel. Changes in soil organic matter re-
flect the difference between net C uptake by
plants and losses of carbon from crop harvest
and from the microbial oxidation of crop
residues and soil organic matter (22).

The conventional tillage system exhibited
a net GWP of 114 g CO2 equivalents m!1

year!1 (Table 2). About half of this potential
was contributed by N2O production (52 g
CO2 equivalents m!2 year!1), with an equiv-
alent amount (50 g CO2 equivalents m!2

year!1) contributed by the combined effects

of fertilizer and lime. The CO2 cost of fuel
use was also significant but less than that of
either lime or fertilizer. No soil C accumulat-
ed in this system, nor did CH4 oxidation
significantly offset any GWP sources.

The net GWP of the no-till system (14 g
CO2 equivalents m!2 year!1) was substan-
tially lower than that of the conventional
tillage system, mostly because of increased
C storage in no-till soils. Slightly lower
fuel costs were offset by somewhat higher
lime inputs and N2O fluxes. Intermediate to

Fig. 1. CH4 oxidation
(top) and N2O pro-
duction (bottom) in
annual and perennial
cropping systems and
unmanaged systems.
Annual crops were
managed as conven-
tional cropping sys-
tems, as no-till sys-
tems, as low–chemical
input systems, or as
organic systems (no
fertilizer or manure).
Midsuccessional sys-
tems were either nev-
er tilled (NT) or his-
torically tilled (HT)
before establishment.
All systems were rep-
licated three to four
times on the same or
similar soil series; flux-
es were measured
over the 1991–99 pe-
riod. There are no sig-
nificant differences
(P" 0.05) among bars
that share the same
letter on the basis of
analysis of variance.
Triangles indicate av-
erage fluxes when in-
cluding the single day of anomalously high fluxes in the no-till and low-input systems in 1999 and
1991, respectively (15).

Table 1. Patterns of aboveground net primary production (ANPP), soil nitrogen availability, and soil organic carbon (30) among study sites (10). Values are
means (#SE) of annual ecosystem averages (n $ 8 years), except that organic C values are 1999 means.

Ecosystem management
ANPP
(MT ha!1

year!1)

NO3-N†
(%g g!1)

N mineralization
potential†

(%g g!1 day!1)

Organic C‡
(%)

Organic C‡
(kg m!2)

&C
(g m!2

year!1)

Annual crops (Corn-soybean-
wheat rotation)
Conventional tillage 9.24 (1.41) 6.54 (0.53) 0.13 (0.05) 1.00 (0.07) 0.94 (0.05) 0.0
No till 9.19 (1.48) 4.74 (0.32) 0.17 (0.03) 1.24 (0.05) 1.24 (0.06) 30.0
Low input with legume cover 8.84 (1.39) 4.34 (0.21) 0.23 (0.02) 1.08 (0.03) 1.05 (0.01) 11.0
Organic with legume cover 7.79 (1.11) 3.83 (0.20) 0.21 (0.02) 1.09 (0.05) 1.02 (0.04) 8.0

Perennial crops
Alfalfa 8.18 (1.67) 2.53 (0.17) 0.26 (0.02) 1.30 (0.05) 1.38 (0.08) 44.0
Poplar 10.17 (4.00) 0.30 (0.02) 0.04 (0.01) 1.40 (0.14) 1.26 (0.11) 32.0

Successional communities
Early successional 4.24 (0.37) 0.63 (0.04) 0.08 (0.01) 1.63 (0.06) 1.54 (0.05) 60.0
Midsuccessional (HT)* 2.60 (0.27) 0.37 (0.05) 0.16 (0.04) 1.61 (0.19) 1.37 (0.14) 0.9
Midsuccessional (NT)* 4.93 (0.22) 0.47 (0.03) 0.03 (0.02) 3.63 (0.28) 2.84 (0.22) 0.0
Late successional forest 5.26 (0.11) 1.84 (0.11) 0.28 (0.03) 2.93 (0.47) 2.29 (0.21) 0.0

*HT, historically tilled; NT, never tilled. †0- to 25-cm depth. ‡0- to 7.5-cm depth.

R E P O R T S
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   AG    Conventional Agriculture 
   ES    Early Successional 
   SF    Successional Forest 
   DF    Deciduous Forest  

* * * * 

* 
* * * 

Teal TK, Gomez-Alvarez V, Schmidt TM
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Functional potential changes 
with land management

454 shotgun metagenomes annotated with MG-RAST
Analysis uses a matrix of the 7058 genes annotated 

Teal TK, Gomez-Alvarez V, Schmidt TM
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Denitrification

Nitrogen metabolism contributes to the 
differentiation of communities
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Denitrifying microbes 
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More denitrification potential in Ag soils 

www.glbrc.org)

23)

Assessing gene abundanceMore denitrification potential in Ag soils 

www.glbrc.org)

23)

Abundance of housekeeping genes 
in the libraries consistent across 

samples and different genes

Where lena is average gene length (924bp) and lenx is the average length of gene X. 

# of annotated reads is used for normalization because it incorporates both library size & quality.
€ 

Z =
#of matchestogene X in libraryY
#of annotated readsin libraryY

∗
lena
lenx

!

Teal TK, Gomez-Alvarez V, Schmidt TM
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More denitrification potential in Ag soils 

www.glbrc.org)

23)Assessing denitrification potential 
(presence of denitrification genes)

Increased denitrification potential in AG and ES sites
Consistent across denitrification pathway

Teal TK, Gomez-Alvarez V, Schmidt TM
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More than 20 year recovery for denitrifiers 

Teal TK, Gomez-Alvarez V, Schmidt TM

Proportion of the community that are denitrifiers 
changes with land management

Denitrification gene abundance is normalized to average housekeeping gene abundance.  This is used 
as an approximation of the proportion of the community that has that gene 

(assuming single copy housekeeping and target genes).

e.g. It can be seen here that in AG ~20% of the community has the nirK gene versus ~12% in DF

Wednesday, August 7, 13



High denitrifer diversity High denitrification diversity

Reads annotated as nirK blasted against reference database of diverse nirKs and each read assigned 
to one of three clades.  Phylogeny of nirKs is challenging and BLAST matches, especially since we’re 

using varying nirK regions is inexact, so analysis limited to this clade level.

Only Clade A captured in standard PCR surveys

Teal TK, Gomez-Alvarez V, Schmidt TM
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Annotating soil reads - thoughts 

� Possible to find well-known genes using long 
(454) reads. 

� Normalize for organism abundance! 

� Primer independence can be important! 

� Note, replicates give you error bars… 



Osedax symbionts 
Table S1 !  Specimens, and collection sites, used in this study  
 
Site Dive1 Date Time Zone 

(months) 
# of 

specimens  
Osedax frankpressi 
with Rs1 symbiont 

     
2890m T486 Oct 2002 8 2 
 T610 Aug 2003 18 3 
 T1069 Jan 2007 59 2 
 DR010 Mar 2009 85 3 
 DR098 Nov 2009 93 4 
 DR204 Oct 2010 104 1 
 DR234 Jun 2011 112 2 
     
1820m T1048 Oct 2006 7 3 
 T1071 Jan 2007 10 3 
 DR012 Mar 2009 36 4 
 DR2362 Jun 2011 63      2  

 
 
 

 
     O. frankpressi from DR236 
1Dive numbers begin with the remotely operated vehicle name; T= Tiburon, DR = Doc 
Ricketts (both owned and operated by the Monterey Bay Aquarium Research Institute). 
2Samples used for genomic analysis were collected during dive DR236. 
 
 

Goffredi et al., submitted. 



Metagenomic assembly followed 
by binning enabled isolation of 
fairly complete genomes 

Symbiont Rs2

Goffredi et al_Figure S2

Symbiont Rs1

α-proteobacteria
(host mitochondria)

host nuclear
genome

A

B

Cytophaga-like
contaminants

Symbiont Rs2

Goffredi et al_Figure S2

Symbiont Rs1

α-proteobacteria
(host mitochondria)

host nuclear
genome

A

B

Cytophaga-like
contaminants



Assembly allowed genomic 
content comparisons to nearest 
cultured relative 

Goffredi et al_Figure S3

A

B



Osedax assembly story 

� Low diversity metagenome! 

� Physical isolation => MDA => sequencing => 
diginorm => binning =>  
�  94% complete Rs1 
�  66-89% complete Rs2 

� Note: many interesting critters are hard to 
isolate => so, basically, metagenomes. 



Human-associated communities 

� “Time series community genomics analysis 
reveals rapid shifts in bacterial species, 
strains, and phage during infant gut 
colonization.” Sharon et al. (Banfield lab); 
Genome Res. 2013 23: 111-120 

 



Setup 

� Collected 11 fecal samples from premature 
female, days 15-24. 

� 260m 100-bp paired-end Illumina HiSeq 
reads; 400 and 900 base fragments. 

� Assembled > 96% of reads into contigs > 
500bp; 8 complete genomes; reconstructed 
genes down to 0.05% of population 
abundance. 



Sharon et al., 2013;  pmid 22936250 



Key strategy: abundance binning 

Bin reads by k-mer 
abundance

Assemble most 
abundance bin

Remove reads that 
map to assembly

Sharon et al., 2013;  pmid 22936250 



Sharon et al., 2013;  pmid 22936250 



Tracking abundance 

Sharon et al., 2013;  pmid 22936250 



Conclusions 

� Recovered strain variation, phage variation, 
abundance variation, lateral gene transfer. 

� Claim that “recovered genomes are superior 
to draft genomes generated in most isolate 
genome sequencing projects.” 



Environmental metagenomics: 
Deepwater Horizon spill 

� “Transcriptional response of bathypelagic 
marine bacterioplankton to the Deepwater 
Horizon oil spill.” Rivers et al., 2013, Moran 
lab.  Pmid 23902988. 



Sequencing strategy 



Protocol for messenger RNA 
extraction, assembly, 
downstream analysis, including 
differential expression. 
 
Note: used overlapping paired-
end reads. 



Great Prairie Grand Challenge - 
soil 

� Together with Janet Jansson, Jim Tiedje, et 
al. 

� “Can we make sense of soil with deep 
Illumina sequencing?” 



Great Prairie Grand Challenge - 
soil 

�  What ecosystem level functions are present, and how do 
microbes do them? 

�  How does agricultural soil differ from native soil? 

�  How does soil respond to climate perturbation? 

�  Questions that are not easy to answer without shotgun 
sequencing: 
�  What kind of strain-level heterogeneity is present in the 

population? 
�  What does the phage and viral population look like? 
�  What species are where? 



A “Grand Challenge” dataset (DOE/JGI) 
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Approach 1: Digital normalization 
(a computational version of library normalization) 

Species A

Species B

Ratio 10:1
Unnecessary data

81%

Suppose you have 
a dilution factor 
of A (10) to B(1).  
To get 10x of B 
you need to get 

100x of A!  
Overkill!! 

 
This 100x will 
consume disk 
space and, 
because of 

errors, memory. 
 

We can discard it 
for you… 



Approach 2: Data partitioning 
(a computational version of cell sorting) 

Split reads into “bins” 
belonging to different 
source species. 

Can do this based almost 
entirely on connectivity 
of sequences. 

“Divide and conquer” 

Memory-efficient 
implementation helps 
to scale assembly. 



Putting it in perspective: 
Total equivalent of ~1200 bacterial genomes 
Human genome ~3 billion bp   

Assembly results for Iowa corn and prairie 
(2x ~300 Gbp soil metagenomes) 

Total 
Assembly 

Total Contigs 
(> 300 bp) 

% Reads 
Assembled 

Predicted 
protein 
coding 

2.5 bill 4.5 mill 19% 5.3 mill 

3.5 bill 
 

5.9 mill 
 

22% 6.8 mill 

Adina Howe 



Resulting contigs are low coverage. 

Figure 11: Coverage (median basepair) distribution of assembled contigs from soil metagenomes.

20



Corn      Prairie 

Iowa prairie & corn - very even. 



Taxonomy– Iowa prairie 
Proteobacteria*(39%)*

Acidobacteria*(9%)*

Bacteroidetes*(8.9%)*

Ac6nobacteria*(8.5%)*

Ascomycota*(6.7%)*

Firmicutes*(5.6%)*

Verrucomicrobia*(5.3%)*

Cyanobacteria*(3.9%)*

Planctomycetes*(3.1%)*

Chloroflexi*(2.6%)*

Euryarchaeota*(1.0%)*

Note: this is predicted taxonomy of contigs w/o considering abundance 
or length. (MG-RAST) 



Taxonomy – Iowa corn 
Proteobacteria*(42%)*

Ac1nobacteria*(12.3%)*

Bacteroidetes*(11.5%)*

Firmicutes*(6.5%)*

Acidobacteria*(4.8%)*

Verrucomicrobia*(3.4%)*

Cyanobacteria*(3.3%)*

Chloroflexi*(3.1%)*

Planctomycetes*(2.6%)*

Euryarchaeota*(1.4%)*

Nitrospirae*(0.9%)*

Note: this is predicted taxonomy of contigs w/o 
considering abundance or length. (MG-RAST) 



Strain variation? 
To
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Position within contig 

Of 5000 most 
abundant 
contigs, only 1 
has a 
polymorphism 
rate > 5% 

Can measure by 
read mapping. 



Concluding thoughts on assembly 
(I) 

� There’s no standard approach yet; almost 
every paper uses a specialized pipeline of 
some sort. 
� More like genome assembly 
�  But unlike transcriptomics… 



Concluding thoughts on assembly 
(II) 

� Anecdotally, everyone worries about strain 
variation. 
�  Some groups (e.g. Banfield, us) have found that 

this is not a problem in their system so far. 
�  Others (viral metagenomes! HMP!) have found 

this to be a big concern. 



Concluding thoughts on assembly 
(III) 

�  Some groups have found metagenome assembly to 
be very useful. 

�  Others (us! soil!) have not yet proven its utility. 



Questions that will be addressed 
tomorrow morning. 

� How much sequencing should I do? 

� How do I evaluate metagenome assemblies? 

� Which assembler is best? 



High coverage is critical. 

Low coverage is the dominant 
problem blocking assembly of 

metagenomes 


