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Shotgun sequencing and coverage 
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“Coverage” is simply the average number of reads that overlap 
each true base in genome. 

 
Here, the coverage is ~10 – just draw a line straight down from the top through all 

of the reads. 



Random sampling => deep sampling 
needed 

Typically 10-100x needed for robust recovery (300 Gbp for human) 



Coverage distribution matters! 

(MD amplified) 



Assembly depends on high coverage 



 
Shared low-level 

transcripts may not 
reach the threshold 

for assembly. 



K-mer based assemblers scale poorly 

Why do big data sets require big machines?? 
 
Memory usage ~ “real” variation + number of errors 
Number of errors ~ size of data set 
 
 
 

GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG

GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG



Conway T C , Bromage A J Bioinformatics 2011;27:479-486 

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, 
please email: journals.permissions@oup.com 

De Bruijn graphs scale poorly with data size 



Practical memory measurements 

Velvet measurements (Adina Howe) 



How much data do we need? (I) 
 
 
 

(“More” is rather vague…) 



Putting it in perspective: 
Total equivalent of ~1200 bacterial genomes 
Human genome ~3 billion bp   

Assembly results for Iowa corn and prairie 
(2x ~300 Gbp soil metagenomes) 

Total 
Assembly 

Total Contigs 
(> 300 bp) 

% Reads 
Assembled 

Predicted 
protein 
coding 

2.5 bill 4.5 mill 19% 5.3 mill 

3.5 bill 
 

5.9 mill 
 

22% 6.8 mill 

Adina Howe 



Resulting contigs are low coverage. 

Figure 11: Coverage (median basepair) distribution of assembled contigs from soil metagenomes.

20



How much? (II) 
�  Suppose we need 10x coverage to assemble a microbial 

genome, and microbial genomes average 5e6 bp of DNA. 
�  Further suppose that we want to be able to assemble a 

microbial species that is “1 in a 100000”, i.e. 1 in 1e5. 
�  Shotgun sequencing samples randomly, so must sample deeply 

to be sensitive. 
 
10x coverage x 5e6 bp x 1e5 =~ 50e11, or 5  Tbp of sequence. 

 
Currently this would cost approximately $100k, for 10 full 
Illumina runs, but in a year we will be able to do it for much 

less. 



We can estimate sequencing req’d: 

http://ivory.idyll.org/blog/how-much-sequencing-is-needed.html 



“Whoa, that’s a lot of data…” 

http://ivory.idyll.org/blog/how-much-sequencing-is-needed.html 



Some approximate metagenome sizes 
�  Deep carbon mine data set: 60 Mbp (x 10x => 600 Mbp) 

�  Great Prairie soil: 12 Gbp (4x human genome) 

�  Amazon Rain Forest Microbial Observatory soil: 26 Gbp 



How can we scale assembly!? 
�  We have developed two prefiltering approaches. 
�  Essentially, we preprocess your reads and (a) normalize their 

coverage and (b) subdivide them by graph partition. 

“We take your reads and make them better! Satisfaction guaranteed or your 
money back!*” 

 
 
 
 

* Terms may not apply to NSF, NIH, and USDA funding bodies. 



Approach I: Digital normalization 
(a computational version of library normalization) 

Species A

Species B

Ratio 10:1
Unnecessary data

81%

Suppose you have a dilution 
factor of A (10) to B(1).  To get 
10x of B you need to get 100x 

of A!  Overkill!! 
 

This 100x will consume disk 
space and, because of errors, 

memory. 
 

We can discard it for you… 



We only need ~5x at each point. 
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“Coverage” is simply the average number of reads that overlap 
each true base in genome. 

 
Here, the coverage is ~10 – just draw a line straight down from the top through all 

of the reads. 



True sequence (unknown)

Reads
(randomly sequenced)

Digital normalization 



True sequence (unknown)

Reads
(randomly sequenced)

X

Digital normalization 



True sequence (unknown)

Reads
(randomly sequenced)

X
X

X
X

X
X

X
X

X

X

X

Digital normalization 



True sequence (unknown)

Reads
(randomly sequenced)

X
X

X
X

X
X

X
X

X

X

X

Digital normalization 



True sequence (unknown)

Reads
(randomly sequenced)

X
X

X
X

X
X

X
X

X

If next read is from a high
coverage region - discard

X

X

Digital normalization 



Digital normalization 
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A read’s median k-mer count is a good 
estimator of “coverage”. 

This gives us a 
reference-free 

measure of coverage. 



Digital normalization approach 
A digital analog to cDNA library normalization, diginorm: 

 
�  Is single pass: looks at each read only once; 

�  Does not “collect” the majority of errors; 

�  Keeps all low-coverage reads; 

�  Smooths out coverage of regions. 



Coverage before digital normalization: 

(MD amplified) 



Coverage after digital normalization: 

Normalizes coverage 
 
Discards redundancy 
 
Eliminates majority of 
errors 
 
Scales assembly dramatically. 
 
Assembly is 98% identical. 



Digital normalization approach 
A digital analog to cDNA library normalization, diginorm is a 

read prefiltering approach that: 
 

�  Is single pass: looks at each read only once; 

�  Does not “collect” the majority of errors; 

�  Keeps all low-coverage reads; 

�  Smooths out coverage of regions. 



Contig assembly is significantly more efficient and now 
scales with underlying genome size 

�  Transcriptomes, microbial genomes incl MDA, and most 
metagenomes can be assembled in under 50 GB of RAM, 
with identical or improved results. 



Digital normalization retains information, while 
discarding data and errors 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



Raw data
(~10-100 GB) Analysis "Information"

~1 GB

"Information"
"Information"

"Information"
"Information"

Database & 
integration

We can use lossy compression approaches to make downstream 
analysis faster and better. 

 

~2 GB – 2 TB of single-chassis RAM 



Metagenomes: Data partitioning 
(a computational version of cell sorting) 

Split reads into “bins” 
belonging to different 
source species. 

Can do this based almost 
entirely on connectivity of 
sequences. 

“Divide and conquer” 
Memory-efficient 

implementation helps to 
scale assembly. 

Pell et al., 2012, PNAS 



Partitioning separates reads by genome. 

When computationally spiking HMP mock data with one E. coli genome 
(left) or multiple E. coli strains (right), majority of partitions contain reads 

from only a single genome (blue) vs multi-genome partitions (green). 

Partitions containing spiked data indicated with a * Adina Howe 

* * 



Partitioning: Technical challenges met (and 
defeated) 
�  Novel data structure properties elucidated via percolation 

theory analysis (Pell et al., 2012, PNAS). 

�  Exhaustive in-memory traversal of graphs containing 5-15 
billion nodes. 

�  Sequencing technology introduces false sequences in graph 
(Howe et al., submitted.) 

�  Only 20x improvement in assembly scaling L. 



Is your assembly good? 

�  Truly reference-free assembly is hard to evaluate. 

�  Traditional “genome” measures like N50 and NG50 simply do 
not apply to metagenomes, because very often you don’t 
know what the genome “size” is. 



Evaluating assembly 

Predicted genome.

X X
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Reads - noisy observations
of some genome.

Assembler
(a Big Black Box)

Evaluating correctness of metagenomes is still undiscovered country. 



Evaluating assemblies 
�  Every assembly returns different results for eukaryotic genomes. 

�  For metagenomes, it’s even worse. 
� No systematic exploration of precision, recall, etc. 
� Very little in the way of cross-comparable data sets 
� Often sequencing technology being evaluated is out of date 
�  etc. etc. 



Our experience 
�  Our metagenome assemblies compare well with others, but 

we have little in the way of ground truth with which to 
evaluate. 

�  Scaffold assembly is tricky; we believe in contig assembly for 
metagenomes, but not scaffolding. 

�  See arXiv paper, “Assembling large, complex metagenomes”, 
for our suggested pipeline and statistics & references. 



Metagenomic assemblies are highly variable 

Adina Howe et al., arXiv 1212.0159 



How to choose a metagenome 
assembler 
�  Try a few. 

�  Use what seems to perform best (most bp > some 
minimum) 

�  I’ve heard/read good things about 
� MetaVelvet 
� Ray Meta 
�  IDBA-UD 

�  Our pipeline doesn’t specify an assembler. 



Adapter trim & 
quality filter

Diginorm to C=10

Trim high-
coverage reads at 

low-abundance
k-mers 

Diginorm to C=5

Partition
graph

Split into "groups"

Reinflate groups 
(optional Assemble!!!

Map reads to 
assembly

Too big to
assemble?

Small enough to assemble?

Annotate contigs 
with abundances

MG-RAST, etc.

The Kalamazoo Metagenome Assembly Pipeline 
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Adapter trim & 
quality filter

Diginorm to C=10

Trim high-
coverage reads at 

low-abundance
k-mers 

Diginorm to C=5

Partition
graph

Split into "groups"

Reinflate groups 
(optional Assemble!!!

Map reads to 
assembly

Too big to
assemble?

Small enough to assemble?

Annotate contigs 
with abundances

MG-RAST, etc.

Diginorm Partitioning 



Thoughts on our pipeline 
�  Should work with any metagenome; very generic approach. 

�  Diginorm can be decoupled from partitioning; 
�  People report that diginorm “just works”; 
�  Partitioning is trickier and only needed for REALLY BIG data sets. 

�  Diginorm does interact with some assemblers in a funny way, so 
suggest starting with Velvet and/or reinflating your partitions. 

�  This pipeline, esp diginorm part, is faster and lower memory than any 
other assembler out there (well, except maybe Minia). 



Deep Carbon data set 
�  Name: DCO_TCO_MM5 

�  Masimong Gold Mine; microbial cells filtered from fracture 
water from within a 1.9km borehole.  (32,000 year old 
water?!) 

�  M.C.Y. Lau, C. Magnabosco, S. Grim, G. Lacrampe 
Couloume, K. Wilkie, B. Sherwood Lollar, D.N. Simkus, G.F. 
Slater, S. Hendrickson, M. Pullin, T.L. Kieft, O. Kuloyo, B. 
Linage, G. Borgonie, E. van Heerden, J. Ackerman, C. van 
Jaarsveld, and T.C. Onstott 



DCO_TCO_MM5 20m reads / 2.1 Gbp 

5.6m reads / 601.3 Mbp 

Adapter trim & 
quality filter

Diginorm to C=10

Trim high-
coverage reads at 

low-abundance
k-mers 

 
 

“Could you take a look at this? MG-
RAST is telling us we have a lot of 
artificially duplicated reads, i.e. the 
data is bad.” 
 
Entire process took ~4 hours of 
computation, or so. 

(Minimum genome size est: 60.1 Mbp) 



Assembly stats: 
All	
  con'gs	
   Con'gs	
  >	
  1kb	
  

k	
   N	
  con'gs	
   Sum	
  BP	
   N	
  con'gs	
   Sum	
  BP	
  
Max	
  
con'g	
  

21	
   343263	
   63217837	
   6271	
   10537601	
   9987	
  
23	
   302613	
   63025311	
   7183	
   13867885	
   21348	
  
25	
   276261	
   62874727	
   7375	
   15303646	
   34272	
  
27	
   258073	
   62500739	
   7424	
   16078145	
   48742	
  
29	
   242552	
   62001315	
   7349	
   16426147	
   48746	
  
31	
   228043	
   61445912	
   7307	
   16864293	
   48750	
  
33	
   214559	
   60744478	
   7241	
   17133827	
   48768	
  
35	
   203292	
   60039871	
   7129	
   17249351	
   45446	
  
37	
   189948	
   58899828	
   7088	
   17527450	
   59437	
  
39	
   180754	
   58146806	
   7027	
   17610071	
   54112	
  
41	
   172209	
   57126650	
   6914	
   17551789	
   65207	
  
43	
   165563	
   56440648	
   6925	
   17654067	
   73231	
  

DCO_TCO_MM5 

(Minimum genome size est: 60.1 Mbp) 



Chose two: 
�  A: k=43 (“long contigs”) 
�  165563 contigs 
�  56.4 Mbp 
�  longest contig: 73231 bp 

�  B: k=43 (“high recall”) 
�  343263 contigs 
�  63.2 Mbp 
�  longest contig is 9987 bp 

DCO_TCO_MM5 

How to evaluate?? 



How many reads map back? 
 
Mapped 3.8m paired-end reads (one subsample): 
�  high-recall: 41% of pairs map 
�  longer-contigs: 70% of pairs map 
 
+ 150k single-end reads: 
�  high-recall: 49% of sequences map 
�  longer-contigs: 79% of sequences map 



Annotation/exploration with MG-RAST 
�  You can upload genome assemblies to MG-RAST, and 

annotate them with coverage; tutorial to follow. 
�  What does MG-RAST do? 



Conclusion 
�  This is a pretty good metagenome assembly – > 80% 

of reads map! 

�  Surprised that the larger dataset (6.32 Mbp, “high recall”) 
accounts for a smaller percentage of the reads – 49% vs 79% 
for the 56.4 Mbp “long contigs” data set. 

�  I now suspect that different parameters are recovering 
different subsets of the sample… 

�  Don’t trust MG-RAST ADR calls. 

DCO_TCO_MM5 



A few notes -- 



You can estimate metagenome size… 



Estimates of metagenome size 
Calculation: # reads * (avg read len) / (diginorm coverage) 
 
Assumes: few entirely erroneous reads (upper bound); 
saturation (lower bound). 
 
�  E. coli: 384k * 86.1 / 5.0 => 6.6 Mbp est.  (true: 4.5 Mbp) 
�  MM5 deep carbon: 60 Mbp 
�  Great Prairie soil: 12 Gbp 
�  Amazon Rain Forest Microbial Observatory: 26 Gbp 



Diginorm changes your coverage. 

DN	
   Reinflated	
  
k	
   N	
  con'gs	
   bp	
   longest	
   N	
  con'gs	
   bp	
   longest	
  
21	
   24	
   441844	
   80662	
   31	
   439074	
   79170	
  
23	
   13	
   443330	
   86040	
   24	
   437988	
   80488	
  
25	
   12	
   443565	
   84324	
   24	
   426949	
   84286	
  
27	
   11	
   443256	
   89835	
   23	
   385473	
   89795	
  
29	
   11	
   443665	
   89748	
   11	
   285725	
   89809	
  
31	
   10	
   440919	
   102131	
   11	
   286508	
   89810	
  
33	
   12	
   432320	
   85175	
   15	
   282373	
   85210	
  
35	
   15	
   423541	
   85177	
   15	
   276158	
   85177	
  
37	
   14	
   352233	
   121539	
   14	
   278537	
   85184	
  
39	
   16	
   322968	
   121538	
   10	
   276068	
   85187	
  
41	
   20	
   393501	
   121545	
   8	
   278483	
   85211	
  
43	
   25	
   363656	
   121624	
   6	
   278380	
   121462	
  

Contigs > 1kb 

http://ivory.idyll.org/blog/the-k-parameter.html 



Extracting whole genomes? 
So far, we have only assembled contigs, but not whole genomes. 
 
Can entire genomes be 
assembled from metagenomic 
data? 
 
Iverson et al. (2012), from 
the Armbrust lab, contains a 
technique for scaffolding 
metagenome contigs into 
~whole genomes.  YES. 
 



Concluding thoughts 
�  What works? 
�  What needs work? 
�  What will work? 



What works? 
Today, 
 
�  From deep metagenomic data, you can get the gene and 

operon content (including abundance of both) from 
communities. 

�  You can get microarray-like expression information from 
metatranscriptomics. 



What needs work? 

�  Assembling ultra-deep samples is going to require more 
engineering, but is straightforward.  (“Infinite assembly.”) 

�  Building scaffolds and extracting whole genomes has been 
done, but I am not yet sure how feasible it is to do 
systematically with existing tools (c.f. Armbrust Lab). 

   



What will work, someday? 

�  Sensitive analysis of strain variation. 
�  Both assembly and mapping approaches do a poor job detecting 

many kinds of biological novelty. 
� The 1000 Genomes Project has developed some good tools that 

need to be evaluated on community samples. 

�  Ecological/evolutionary dynamics in vivo. 
� Most work done on 16s, not on genomes or functional content. 
� Here, sensitivity is really important! 



The interpretation challenge 
�  For soil, we have generated approximately 1200 bacterial genomes 

worth of assembled genomic DNA from two soil samples. 

�  The vast majority of this genomic DNA contains unknown genes 
with largely unknown function. 

�  Most annotations of gene function & interaction are from a few 
phylogenetically limited model organisms 
�  Est 98% of annotations are computationally inferred: transferred 

from model organisms to genomic sequence, using homology. 
�  Can these annotations be transferred? (Probably not.) 
 

This will be the biggest sequence analysis challenge of the 
next 50 years. 



What are future needs? 
�  High-quality, medium+ throughput annotation of genomes? 

�  Extrapolating from model organisms is both immensely 
important and yet lacking. 

�  Strong phylogenetic sampling bias in existing annotations. 

�  Synthetic biology for investigating non-model organisms? 
(Cleverness in experimental biology doesn’t scale L) 

 
�  Integration of microbiology, community ecology/evolution 

modeling, and data analysis.  



Papers on our work. 
�  2012 PNAS, Pell et al., pmid 22847406 (partitioning). 

�  Submitted, Brown et al., arXiv:1203.4802 (digital normalization). 

�  Submitted, Howe et al, arXiv: 1212.0159 (artifact removal from 
Illumina metagenomes). 

�  Submitted, Howe et al., arXiv: 1212.2832 – Assembling large, 
complex environmental metagenomes. 

�  In preparation, Zhang et al. – efficient k-mer counting. 



Recommended reading 
�  “Comparative metagenomic and rRNA microbial diversity 

characterization using archaeal and bacterial synthetic 
communities.” Shakya et al., pmid 23387867. 
� Good benchmark data set! 
“The results … indicate that a single gene marker such as rRNA is a poor 

determinant of the community structure in metagenomic sequence data 
from complex communities.” 


