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Assembly vs mapping 
� No reference needed, for assembly! 
◦  De novo genomes, transcriptomes… 

�  But: 
◦  Scales poorly; need a much bigger computer. 
◦  Biology gets in the way (repeats!) 
◦ Need higher coverage 

�  But but: 
◦ Often your reference isn’t that great, so assembly 

may actually be the best way to go. 
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Repeats do cause problems: 

Assemble based on word overlaps: 



Shotgun sequencing & assembly 

Randomly fragment & sequence from DNA; 
reassemble computationally. 

UMD assembly primer (cbcb.umd.edu) 



Assembly – no subdivision! 

Assembly is inherently an all by all process.  
There is no good way to subdivide the 
reads without potentially missing a key 

connection 



Short-read assembly 

�  Short-read assembly is problematic 
� Relies on very deep coverage, ruthless 

read trimming, paired ends. 

UMD assembly primer (cbcb.umd.edu) 



Short read lengths are hard. 

Whiteford et al., Nuc. Acid Res, 2005 
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Short read lengths are hard. 

Whiteford et al., Nuc. Acid Res, 2005 

Conclusion: even with 
a read length of 200, the 
E. coli genome cannot be 
assembled completely. 
 
Why? REPEATS. 
 
This is why paired-end 
sequencing is so important 
for assembly. 



Four main challenges for de novo 
sequencing. 
�  Repeats. 
�  Low coverage. 
�  Errors 

These introduce breaks in the 
construction of contigs. 

 
�  Variation in coverage – transcriptomes and metagenomes, as 

well as amplified genomic. 

This challenges the assembler to distinguish between erroneous 
connections (e.g. repeats) and real connections. 



Repeats 

� Overlaps don’t place sequences uniquely 
when there are repeats present. 

UMD assembly primer (cbcb.umd.edu) 



Coverage 

Easy calculation: 
 
(# reads x avg read length) / genome size 
 
So, for haploid human genome: 
 
30m reads x 100 bp = 3 bn 



Coverage 

�  “1x” doesn’t mean every DNA sequence 
is read once. 

�  It means that, if sampling were systematic, 
it would be. 

�  Sampling isn’t systematic, it’s random! 



Actual coverage varies widely from 
the average, for low avg coverage 



Two basic assembly approaches 

� Overlap/layout/consensus 
� De Bruijn k-mer graphs 

The former is used for long reads, esp all 
Sanger-based assemblies.  The latter is 
used because of memory efficiency. 



Overlap/layout/consensus 

Essentially, 
1.  Calculate all overlaps 
2.  Cluster based on overlap. 
3.  Do a multiple sequence alignment 

UMD assembly primer (cbcb.umd.edu) 



K-mers 
Break reads (of any length) down into multiple 

overlapping words of fixed length k. 
 

ATGGACCAGATGACAC (k=12) => 
 
ATGGACCAGATG 
 TGGACCAGATGA 
  GGACCAGATGAC 
   GACCAGATGACA 
    ACCAGATGACAC 
 



K-mers – what k to use? 

Butler et al., Genome Res, 2009 



K-mers – what k to use? 

Butler et al., Genome Res, 2009 



Big genomes are problematic 

Butler et al., Genome Res, 2009 



Choice of k affects apparent coverage 



K-mer graphs - overlaps 

J.R. Miller et al. / Genomics (2010) 



K-mer graph (k=14) 

Each node represents a 14-mer; 
Links between each node are 13-mer overlaps 



K-mer graph (k=14) 

Branches in the graph represent partially overlapping sequences. 



K-mer graph (k=14) 

Single nucleotide variations cause long branches 



K-mer graph (k=14) 

Single nucleotide variations cause long branches; 
They don’t rejoin quickly. 



Choice of k affects apparent coverage 



K-mer graphs - branching 

 
 
 
 
 
 
 
 
 

For decisions about which paths etc, biology-based 
heuristics come into play as well. 



K-mer graph complexity - spur 

(Short) dead-end in graph. 

Can be caused by error at the end of some 
overlapping reads, or low coverage 

J.R. Miller et al. / Genomics (2010) 



K-mer graph complexity - bubble 

Multiple parallel paths that diverge and join. 
 

Caused by sequencing error and true 
polymorphism / polyploidy in sample.  

J.R. Miller et al. / Genomics (2010) 



K-mer graph complexity – “frayed 
rope” 

Converging, then diverging paths. 
 

Caused by repetitive sequences. 

J.R. Miller et al. / Genomics (2010) 



Groxel view of repeat region / Arend Hintze 



Resolving graph complexity 
�  Primarily heuristic (approximate) 

approaches. 

� Detecting complex graph structures can 
generally not be done efficiently. 

� Much of the divergence in functionality of 
new assemblers comes from this. 

�  Three examples: 



Read threading 

Single read spans k-mer graph => extract 
the single-read path. 

J.R. Miller et al. / Genomics (2010) 



Mate threading 

 
 
 
 
 
Resolve “frayed-rope” pattern caused by 

repeats, by separating paths based on 
mate-pair reads.  

J.R. Miller et al. / Genomics (2010) 



Path following 

Reject inconsistent paths based on mate-
pair reads and insert size. 

J.R. Miller et al. / Genomics (2010) 



More assembly issues 
� Many parameters to optimize! 

�  RNAseq has variation in copy number; naïve 
assemblers can treat this as repetitive and 
eliminate it. 

�  Some assemblers require gobs of memory (4 
lanes, 60m reads => ~ 150gb RAM) 

� How do we evaluate assemblies? 
◦ What’s the best assembler? 



K-mer based assemblers scale 
poorly 

Why do big data sets require big machines?? 
 
Memory usage ~ “real” variation + number of errors 
Number of errors ~ size of data set 
 
 
 

GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG

GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG



Conway T C , Bromage A J Bioinformatics 2011;27:479-486 

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, 
please email: journals.permissions@oup.com 

De Bruijn graphs scale poorly with erroneous data 



 
Shared low-level 

transcripts may not 
reach the 

threshold for 
assembly. 



Is your assembly good? 
�  For genomes, N50 is an OK measure: 
◦  “50% or more of the genome is in contigs > 

this number” 

� That assumes your contigs are correct…! 
 

� What about mRNA and metagenomes?? 

� Truly reference-free assembly is 
hard to evaluate. 



How do you compare assemblies? 



What’s the best assembler? 
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Bird assembly 

Bradnam et al., Assemblathon 2: 
http://arxiv.org/pdf/1301.5406v1.pdf 



What’s the best assembler? 
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Fish assembly 

Bradnam et al., Assemblathon 2: 
http://arxiv.org/pdf/1301.5406v1.pdf 



What’s the best assembler? 

Bradnam et al., Assemblathon 2: 
http://arxiv.org/pdf/1301.5406v1.pdf 
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Snake assembly 



Note: the teams mostly used 
multiple software packages 

Tables 
 
Table 1: Assemblathon 2 participating team details. 
 
Team identifiers are used to refer to assemblies in figures (Supplementary Table 1 lists 
alternative identifiers used during the evaluation phase). Sequence data types for bird 
assemblies are: Roche 454 (4), Illumina (I), and Pacific Biosciences (P). Additional details of 
assembly software, including version numbers and CPU/RAM requirements of software are 
provided in Supplementary Table 2. Detailed assembly instructions are available for some 
assemblies in the Supplementary Methods. 
 

Team name Team 
identifier 

Number of 
assemblies 
submitted  

Sequence 
data used 

for bird 
assembly 

Institutional affiliations Principal assembly 
software used 

  Bird Fish Snake    

ABL ABL 1 0 0 4 + I Wayne State University HyDA 

ABySS ABYSS 0 1 1  Genome Sciences Centre, British 
Columbia Cancer Agency 

ABySS and Anchor 

Allpaths ALLP 1 1 0 I Broad Institute ALLPATHS-LG 

BCM-HGSC BCM 2 1 1 4 + I + P1 Baylor College of Medicine Human 
Genome Sequencing Center 

SeqPrep, KmerFreq, 
Quake, BWA, 
Newbler, ALLPATHS-
LG, Atlas-Link, Atlas-
GapFill, Phrap, 
CrossMatch, Velvet, 
BLAST, and BLASR 

CBCB CBCB 1 0 0 4 + I + P University of Maryland, National 
Biodefense Analysis and 
Countermeasures Center 

Celera assembler and 
PacBio Corrected 
Reads (PBcR) 

CoBiG2 COBIG 1 0 0 4 University of Lisbon 4Pipe4 pipeline, 
Seqclean, Mira, 
Bambus2 

CRACS CRACS 0 0 1  Institute for Systems and 
Computer Engineering of Porto 
TEC, European Bioinformatics 
Institute 

ABySS, SSPACE, 
Bowtie, and FASTX 

CSHL CSHL 0 3 0  Cold Spring Harbor Laboratory, 
Yale University, University of Notre 
Dame 

Metassembler, 
ALLPATHS, 
SOAPdenovo 

CTD CTD 0 3 0  National Research University of 
Information Technologies, 

Unspecified 



Answer: it depends 
� Different assemblers perform differently, 

depending on 
◦ Repeat content 
◦ Heterozygosity 

� Generally the results are very good (est 
completeness, etc.) but different between 
different assemblers (!) 

� There Is No One Answer. 



Estimated completeness: CEGMA 

Each assembler lost different ~5% CEGs 



Tradeoffs in N 50 and % incl. 
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Bird assembly 



Practical issues 

� Do you have enough memory? 
� Trim vs use quality scores? 
� When is your assembly as good as it gets? 
� Paired-end vs longer reads? 

� More data is not necessarily better, if it 
introduces more errors. 



Practical issues 

� Many bacterial genomes can be 
completely assembled with a combination 
of PacBio and Illumina. 

 (see: http://arxiv.org/abs/1304.3752) 

� As soon as repeats, heterozygosity, and 
GC variation enter the picture, all bets 
are off (eukaryotes are trouble!) 



Mapping & assembly 

� Assembly and mapping (and variations 
thereof) are the two basic approaches 
used to deal with next-gen sequencing 
data. 

� Go forth! Map! Assemble! 


